Safety measures to prevent or mitigate hypoglycemia are an important component of open loop, closed loop, and advisory mode insulin therapy control settings in type 1 diabetes. In recent work, we introduce a method for the automatic, gradual attenuation of the insulin pump delivery rate when a risk of hypoglycemia is detected, a method that we refer to as brakes. In the methods presented here, we demonstrate the use of historical glucose measurement data to inform and enhance the ability of the brakes to prevent hypoglycemia in real-time. The updated brakes are based on a patient-specific, time-varying model that reflects the typical trajectory of glycemic fluctuations throughout the day. Historical heightened risk of hypoglycemia throughout the day prompts an increase in the aggressiveness of insulin attenuation as compared to the original brakes that are based on real-time data alone. Through the use of available real-time data supplemented with historical glucose information to assess hypoglycemic risk, we are able to better anticipate and prevent hypoglycemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369012PMC
http://dx.doi.org/10.1016/j.cmpb.2011.12.016DOI Listing

Publication Analysis

Top Keywords

insulin therapy
8
risk hypoglycemia
8
historical glucose
8
prevent hypoglycemia
8
brakes based
8
real-time data
8
hypoglycemia
5
historical
4
historical data
4
data enhances
4

Similar Publications

Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.

Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.

View Article and Find Full Text PDF

Diabetes mellitus is one of the metabolic syndromes that is associated with cognitive deficit, dementia, and Alzheimer's disease (AD) like pathology due to impaired insulin-signalling in the brain, oxidative stress and mitochondrial dysfunction. Nanotechnology is one of the most promising techniques for targeting the brain. However, the toxicity of metal nanoparticles is one of the biggest challenges to be studied.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Background: Insomnia is a modifiable risk factor for type 2 diabetes.

Objective: Describe the methodology for the Sleep for Health study, a randomized clinical trial examining the effectiveness of digital cognitive behavioral therapy for insomnia (dCBT-I) in reducing hyperglycemia in 300 people with both insomnia and prediabetes.

Outcomes: Primary outcome is glucose level 2 h after a 75-g glucose load.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!