Biohydrogen production from co-digestion of cow manure (M) and waste milk (WM), milk from mastitis cows treated with cefazolin, was evaluated in a 3×5 factorial design. Organic loading of 20, 40 and 60g volatile solid (VS)L(-1) were tested at temperature of 55°C using M:WM (VS/VS) 70:30, 50:50, 30:70, 10:90 and 0:100. Hydrogen production increased with organic loading and M:WM to a maximum of 59.5mLg(-1) VS fed at 40g VSL(-1) in M:WM 70:30. Butyrate was the main volatile fatty acid (VFA) accumulated in M:WM 50:50, 30:70 and 10:90. Overall reduction of more than 90% of cefazolin resistant bacteria was observed in all the treatments. The reduction was higher at 40 and 60 than 20g VSL(-1) (P<0.05). Inclusion of waste milk enhances hydrogen production from cow manure and could offer added benefit of waste milk treatment and disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2012.01.102 | DOI Listing |
Bioresour Technol
January 2025
Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4.
View Article and Find Full Text PDFJ Environ Manage
February 2025
International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India. Electronic address:
The global shift towards renewable energy sources highlights the urgent need for sustainable hydrogen production, with photo-fermentative hydrogen evolution (PFHP) emerging as a promising solution. This review addresses the challenges and opportunities in optimizing PFHP, specifically the role of photosynthetic bacteria (PBS) in utilizing sunlight for hydrogen production. We focus on the key factors influencing PFHP, including light intensity, reactor design, substrate selection, carbon-to-nitrogen ratio, metal ions, temperature, pH, charge transfer and genetic engineering.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Viona Consulting Inc, Agro-Environmental Innovation and Technology, Research and Development Company, Thornhill, ON, L3T 0C6, Canada.
Energy from renewable resources has been growing in popularity, which ultimately helps reduce emissions of greenhouse gases (GHGs) and contaminants. Since hydrogen (H) has a higher combustion production of energy than hydrocarbon fuels, it has been identified as a clean, sustainable, and environmentally friendly energy source. There are several benefits to producing biohydrogen (bioH) from renewable sources, including lower cost and increased sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!