Fos positive neurons in the brain stem and amygdala mostly express vesicular glutamate transporter 3 after bitter taste stimulation.

Brain Res

Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, 76# W. Yanta Road, Xi'an, 710061, PR China.

Published: March 2012

The present study examined the relationship between vesicular glutamate transpoter-3 (VGLUT3) positive cells and the activation of neurons in the brainstem and amygdala by bitter taste, using double-labeling immunohistochemistry. Conscious animals were subjected to intraoral bitter taste stimulation with quinine solution. Following this, neuronal activation was assessed by c-Fos expression and an analysis of c-Fos expression cells, VGLUT3 positive cells and double-labeled cells was made in the nucleus of the solitary tract (NST), the parabrachial nucleus (PBN) and amygdala. Results showed that intraoral bitter taste stimulation led to significant increases in the number of c-Fos-expressing and double-labeled cells in the NST, PBN and amygdala. Results also showed a decrease in the number of c-Fos-positive and double-labeled cells in the amygdala, in comparison with neurons in the brainstem, after bitter taste stimulation. These results suggest that bitter taste activates cells in the NST, PBN and amygdala and these effects are partly mediated by VGLUT3 positive cells. Moreover, double-labeled neurons also exhibited a preferential distribution after quinine stimulation compared to water stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2012.01.012DOI Listing

Publication Analysis

Top Keywords

bitter taste
24
taste stimulation
16
vglut3 positive
12
positive cells
12
double-labeled cells
12
pbn amygdala
12
vesicular glutamate
8
cells
8
neurons brainstem
8
intraoral bitter
8

Similar Publications

Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.

View Article and Find Full Text PDF

In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).

View Article and Find Full Text PDF

Background: Individuals with avoidant/restrictive food intake disorder (ARFID) self-report heightened sensitivity to taste and smell, but neither phenomenon has been systematically explored in the laboratory. We hypothesized that, compared to healthy controls (HC, n = 34), children, adolescents, and adults with full/subthreshold ARFID (n = 100; ages 9 to 23 years) would self-report heightened response to taste/smell stimuli and exhibit stronger bitter taste perception and heightened smell perception in performance-based tasks, and these differences would be especially prominent in those with the ARFID-sensory sensitivity presentation.

Method: We measured self-reported sensitivity to taste/smell with the adolescent/adult sensory profile (AASP).

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!