Antibody responses are initiated by the binding of antigens to clonally distributed cell surface B cell receptors (BCRs) that trigger signaling cascades resulting in B cell activation. Using conventional biochemical approaches, the components of the downstream BCR signaling pathways have been described in considerable detail. However, far less is known about the early molecular events by which the binding of antigens to the BCRs initiates BCR signaling. With the recent advent of high resolution, high speed, live cell, and single molecule imaging technologies, these events are just beginning to be elucidated. Understanding the molecular mechanisms underlying the initiation of BCR signaling may provide new targets for therapeutics to block dysregulated BCR signaling in systemic autoimmune diseases and in B cell tumors and to aid in the design of protein subunit vaccines. In this chapter, we describe the general procedures for using these new imaging techniques to investigate the early events in the initiation of BCR signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761359PMC
http://dx.doi.org/10.1016/B978-0-12-391856-7.00038-XDOI Listing

Publication Analysis

Top Keywords

bcr signaling
20
live cell
8
binding antigens
8
initiation bcr
8
cell
7
signaling
7
bcr
5
understanding initiation
4
initiation cell
4
cell signaling
4

Similar Publications

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Selected chronic myeloid leukemia (CML) patients may discontinue their tyrosine kinase inihibitor (TKI) in an attempt to achieve sustained treatment-free remission (TFR), which mitigates therapy-related side effects and limits treatment costs. TFR has been extensively studied following the discontinuation of adenosine triphosphate (ATP) - competitive TKI. However, there is minimal data concerning TFR after the discontinuation of the novel TKI asciminib.

View Article and Find Full Text PDF

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Enhanced antibody responses in CD19-Cre mice.

Sci Rep

January 2025

Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland.

CD19-Cre is an important and widely used Cre-lox model for B cell-specific genetic manipulation in murine systems. Mice carrying one allele of CD19-Cre are, at the same time, rendered heterozygote for CD19, a crucial coreceptor of the B cell antigen receptor (BCR). As a result, CD19-Cre mice exhibit diminished expression levels of CD19, with potential, yet insufficiently examined, consequences in B cell activation.

View Article and Find Full Text PDF

Rearrangements of cytokine receptor-like factor 2 gene (CRLF2) are present in ∼50% of B-lymphoblastic leukemia/lymphoma (B-ALL) with BCR::ABL1-like features. Herein, we report three patients with CRLF2-rearranged mixed phenotype acute leukemia (MPAL). All three cases were B/myeloid MPAL in young patients harboring P2RY8::CRLF2 or IGH::CRLF2 with additional genomic alterations in signaling (JAK and RAS) and cell cycle (CDKN2A/B) pathways, a genomic profile similar to that in BCR::ABL1-like B-ALL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!