The present study describes the presence of pseudoenhancement during contrast-enhanced ultrasound (CEUS) imaging of human carotid arteries and the reproduction of this pseudoenhancement in vitro. Seventy patients underwent bilateral CEUS examination of the carotid arteries using a Philips iU22 ultrasound system equipped with a L9-3 ultrasound probe and SonoVue microbubble contrast. During CEUS of the carotid arteries, we identified enhancement in close proximity to the far wall, parallel to the main lumen. The location of this enhancement does not correlate to the anatomical location of a parallel vessel. To corroborate the hypothesis that this is a pseudoenhancement artifact, the enhancement was recreated in a tissue-mimicking material phantom, using the same ultrasound system, settings and contrast agent as the patient study. The phantom study showed that pseudoenhancement may be present during vascular CEUS and that the degree of pseudoenhancement is influenced by the size and concentration of the microbubbles. During vascular CEUS, identification of the artifact is important to prevent misinterpretation of enhancement in and near the far wall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.12.019 | DOI Listing |
Invest Radiol
January 2025
From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
View Article and Find Full Text PDFCureus
December 2024
Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, USA.
The facial and transverse facial arteries supply blood to the superficial structures of the face. Understanding these arterial variations is essential for optimizing surgical planning and outcomes, especially in invasive facial procedures. A 78-year-old male cadaveric dissection documented variations in facial and transverse facial arteries.
View Article and Find Full Text PDFInt J Gen Med
January 2025
Department of Cardiac Surgery, Impulse Hospital, Dhaka, Bangladesh.
Background: Atherosclerosis is a systemic vascular disease commonly affecting coronary and carotid arteries, particularly in diabetes mellitus (DM). This study assessed the association of DM with significant carotid artery stenosis (CAS) among the coronary artery disease (CAD) population undergoing isolated elective coronary artery bypass graft (CABG) surgery.
Methods: A prospective cross-sectional study evaluated 100 Bangladeshi CAD patients who underwent isolated elective CABG from January 2017 to September 2019.
Open Heart
January 2025
Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Gothenburg, Sweden.
Purpose: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ECG-gated coronary CT angiography (CCTA) scans.
Methods: From a database of 6293 CCTA scans, we used pre-existing curved multiplanar reformations (CMR) images of the LAD, RCA and LCX arteries to create end-to-end deep-learning models for the detection of moderate or severe stenoses. We preprocessed the images by exploiting domain knowledge and employed a transfer learning approach using EfficientNet, ResNet, DenseNet and Inception-ResNet, with a class-weighted strategy optimised through cross-validation.
Comput Methods Programs Biomed
January 2025
Dalian University of Technology Affiliated Central Hospital, Dalian 116024, China.
Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.
Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!