Background: The seed cell is a core problem in bone tissue engineering research. Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro, which suggests that they may become a new kind of seed cells for bone tissue engineering. The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo, and hDPSCs may become appropriate seed cells for bone tissue engineering.
Methods: We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment. After culturing and expansion to three passages, the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium. After 14 days in culture, the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks. In 6-well plate culture, osteogenesis was assessed by alkaline phosphatase staining, Von Kossa staining, and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL I), bone sialoprotein (BSP), osteocalcin (OCN), RUNX2, and osterix (OSX). In three-dimensional gelatin scaffold culture, X-rays, hematoxylin/eosin staining, and immunohistochemical staining were used to examine bone formation.
Results: In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential. In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice.
Conclusions: These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering. As a special stem cell source, hDPSCs may blaze a new path for bone tissue engineering.
Download full-text PDF |
Source |
---|
Pharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFPharmaceutics
December 2024
Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
Osteosarcoma is a rare disease, but it is the most frequent malignant bone tumor. Primary treatment consists of preoperative MAP (methotrexate (MTX), doxorubicin and cisplatin) chemotherapy followed by surgery and adjuvant chemotherapy. Pathological response to preoperative chemotherapy is one of the most important prognostic factors, but molecular biomarkers are lacking.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Center in Dental Sciences (CICO-UFRO), Dental School, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile.
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia.
Bone transplantation ranks second worldwide among tissue prosthesis surgeries. Currently, one of the most promising approaches is regenerative medicine, which involves tissue engineering based on polymer scaffolds with biodegradable properties. Once implanted, scaffolds interact directly with the surrounding tissues and in a fairly aggressive environment, which causes biodegradation of the scaffold material.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54000, Pakistan.
Recently, driven by a growing focus on environmental sustainability and cost-effectiveness, researchers have shown a keen interest in creating useful materials from bio-wastes, particularly for their potential applications in the biomedical field. Current research has been conducted on the impact of date seed powder (DSP) on hydroxyapatite (HA) formation, specifically in relation to the promotion of bone health and regeneration. HA is an essential component of bone tissue and plays a crucial role in maintaining bone strength and structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!