Background: Endogenous hydrogen sulfide is a new neuromodulator which takes part in the regulation of central nervous system physiology and diseases. Whether endogenous hydrogen sulfide in the central nervous system regulates cardiovascular activity is not known. In the present study, we observed the hemodynamic changes of hydrogen sulfide or its precursor by intracerebroventricular injection, and investigate the possible roles of endogenous digitalis like factors and sympathetic activity in the regulation.

Methods: Ninety-four Sprague-Dawley rats underwent a right cerebroventricular puncture, then the hydrogen sulfide saturation buffer or its precursor injected by intrcerebroventricular catheter. A heperin-filled catheter was inserted into the right femoral artery or into the left ventricle, and changes of blood pressure or cardiac function recorded by a Powerlab/4S instrument. Phentolamine or metoprolol were pre-injected to observe the possible role in autonomic nerve activity. After rats were sacrificed, plasma was collected and endogenous digitalis-like factors were measured with a commercial radioimmunoassay kit. The aortic, cardiac sarcolemmal vesicles were isolated and the activity of Na(+)-K(+)-ATPase was measured as ouabain-sensitive ATP hydrolysis under maximal velocity conditions by measuring the release of inorganic phosphate from ATP. Unpaired Student's t test for two groups or analysis of variances (ANOVA) for multiple groups were used to compare the differences of the changes.

Results: Intracerebroventricular injection of hydrogen sulfide induced a transient hypotension, then dramatic hypertenive effects in a dose-dependent manner. Bolus injection of L-cysteine or beta- mercaptopyruvate also increased mean arterial pressure (P < 0.01), whereas hydroxylamine-a cystathionine beta synthase inhibitor decreased the arterial pressure (P < 0.01). Hydrogen sulfide and L-cysteine increased mean arterial pressure, left ventricular develop pressure and left-ventricle maximal rate of systolic and diastolic pressure; these functions were decreased by hydroxylamine (P < 0.01). Glibenclamide (a K(ATP) channel blocker) blocked the transient hypotensive effect, phentolamine (an alpha-adrenergic receptor blocker) blocked the hypertensive effect, and metoprolol (a selective beta 1 receptor blocker) blocked the positive inoptropic effect of central nervous system hydrogen sulfide. The endogenous digitalis-like factors in plasma were elevated (P < 0.01) after treatment with L-cysteine, association with decreasing Na(+)-K(+)-ATPase activity in cardiac or aortic sarcolemmal vesicles (P < 0.01). Hydroxylamine injection reduced the endogenous digitalis-like factors level in plasma association with increasing Na(+)-K(+)-ATPase activity in cardiac and aortic sarcolemmal vesicles.

Conclusion: Central nervous system endogenous hydrogen sulfide upregulated mean arterial pressure and cardiac systolic function by activation of sympathetic nerves or release of endogenous digitalis-like factors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hydrogen sulfide
36
central nervous
20
nervous system
20
endogenous hydrogen
16
endogenous digitalis-like
16
digitalis-like factors
16
arterial pressure
16
blocker blocked
12
endogenous
9
hydrogen
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!