Visualizing the three-dimensional structures of a protein during its biological activity is key to understanding its mechanism. In general, protein structure and function are pH-dependent. Changing the pH provides new insights into the mechanisms that are involved in protein activity. Photoactive yellow protein (PYP) is a signaling protein that serves as an ideal model for time-dependent studies on light-activated proteins. Its photocycle is studied extensively under different pH conditions. However, the structures of the intermediates remain unknown until time-resolved crystallography is employed. With the newest beamline developments, a comprehensive time series of Laue data can now be collected from a single protein crystal. This allows us to vary the pH. Here we present the first structure, to our knowledge, of a short-lived protein-inhibitor complex formed in the pB state of the PYP photocycle at pH 4. A water molecule that is transiently stabilized in the chromophore active site prevents the relaxation of the chromophore back to the trans configuration. As a result, the dark-state recovery is slowed down dramatically. At pH 9, PYP stops cycling through the pB state altogether. The electrostatic environment in the chromophore-binding site is the likely reason for this altered kinetics at different pH values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260688 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.11.4021 | DOI Listing |
J Phys Chem Lett
December 2024
Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
Simplified quantum chemistry (sQC) methods can routinely compute excited states for very large systems in an "all-atom" fashion. They are viable alternatives to regular multiscale schemes. sQC methods have the advantage of accounting explicitly for all of the environment at a quantum mechanical (QM) level.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, USA.
The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF-EBS. Here, we report experiments emerging from the initial phase of user operation at ID29.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Department of Physics, Nanjing University, Nanjing 210093, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China. Electronic address:
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent.
View Article and Find Full Text PDFChem Commun (Camb)
October 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!