Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260780 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.12.026 | DOI Listing |
J Fungi (Basel)
November 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India.
The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Biochemistry, Western University, London, ON, Canada.
Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.
Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.
ACS Nano
December 2024
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!