Amiodarone (AMD) is known to induce a transient increase in cytosolic Ca2+ level in cells of the yeast Saccharomyces cerevisiae. In the present study the effect of AMD on the thermotolerance and Hsp104p synthesis of the yeast was studied. AMD induced Hsp104p synthesis and increased survival of the yeast after a severe heat shock (50°C). The development of thermotolerance to a considerable extent depended on the presence of Hsp104p. The same effect was achieved by treatment with the classical uncoupler CCCP, which is also known to increase the cytosolic Ca2+ level. It is supposed that the change in intracellular Ca2+ concentration plays an important role in activation of the HSP104 gene expression and in increasing the thermotolerance of the yeast. The possible link between mitochondrial activity and calcium homeostasis is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297912010099DOI Listing

Publication Analysis

Top Keywords

hsp104p synthesis
12
thermotolerance hsp104p
8
synthesis yeast
8
yeast saccharomyces
8
saccharomyces cerevisiae
8
increase cytosolic
8
cytosolic ca2+
8
ca2+ level
8
yeast
5
amiodarone thermotolerance
4

Similar Publications

Aggregation of the prion protein has strong implications in the human prion disease. Sup35p is a yeast prion, and has been used as a model protein to study the disease mechanism. We have studied the pattern of Sup35p aggregation inside live yeast cells under stress, by using confocal microscopy, fluorescence activated cell sorting and western blotting.

View Article and Find Full Text PDF

Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast.

Dev Cell

December 2015

Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA. Electronic address:

The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels.

View Article and Find Full Text PDF

Despite the significant amount of experimental data available on trehalose, the molecular mechanism responsible for its intracellular stabilising properties has not emerged yet. The repair of cellular homeostasis in many protein-misfolding diseases by trehalose is credited to the disaccharide being an inducer of autophagy, a mechanism by which aggregates of misfolded proteins are cleared by the cell. In this work, we expressed the pathogenic N-terminal fragment of huntingtin in Δnth1 mutant (unable to degrade trehalose) of Saccharomyces cerevisiae BY4742 strain.

View Article and Find Full Text PDF

Previous genetic approaches have enabled the identification of key partners for prion propagation in yeast, such as HSP104. All the experiments performed thus far have been conducted in a haploid context. In this study, we used a diploid yeast strain to identify genes that interfere with [URE3] stability.

View Article and Find Full Text PDF

Amyloid aggregates of the calcium-binding EF-hand proteins, S100A8 and S100A9, have been found in the corpora amylacea of patients with prostate cancer and may play a role in carcinogenesis. Here we present a novel model system using the yeast Saccharomyces cerevisiae to study human S100A8 and S100A9 aggregation and toxicity. We found that S100A8, S100A9 and S100A8/9 cotransfomants form SDS-resistant non-toxic aggregates in yeast cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!