Influence of ι-carrageenan, pectin, and gelatin on the physicochemical properties and stability of milk protein-stabilized emulsions.

J Food Sci

Dept of Nutrition, Dietetics and Food Science, Utah State Univ, 8700 Old Main Hill, Logan, Utah 84322-8700, USA.

Published: February 2012

AI Article Synopsis

Article Abstract

Unlabelled: This study evaluated the stability of bilayer emulsions as a function of secondary layer composition and pH. Primary emulsions were formulated with 5% soybean oil, 1% protein from nonfat dry milk (NDM) powder as emulsifier and ι-carrageenan (ι-carr), low-methoxyl pectin (LMp), high-methoxyl pectin (HMp), or gelatin as secondary layers. ζ-Potential values increased for each emulsion as the pH decreased, with ι-carr emulsions being consistently more negatively charged than primary emulsions and significantly more stable. ζ-Potential values were not always correlated to emulsion stability. Gelatin secondary emulsions at pH 3 and HMp secondary emulsions at pH 7 were unstable due to the presence of depletion flocculation. In addition, LMp secondary emulsions stability at pH 7 might be due to calcium bridging, which increased the emulsion's viscosity. Overall, the stability of NDM emulsions was improved when ι-carr and LMp were used as secondary layers at pH 7 and 5, and when ι-carr and HMp were used as secondary layers at pH 3. Increased stability of these systems can be attributed to a second homogenization step used to formulate the secondary emulsions and to the presence of Ca(+2) in the NDM. Results from this research show that the stability of bilayer emulsions is driven by the presence of depletion flocculation, droplet charge, droplet size and distribution and viscosity.

Practical Application: The use of everyday ingredients (nonfat dry milk powder, gelatin, pectin, and carrageenan), which are understood and accepted by the average consumer, creates label-friendly products that are the wave of the future. Stable emulsions can be formed using these ingredients at various pH. Understanding the stability and how the pH impacts the physicochemical characteristics and stability of these emulsions will enable manufactures to use ordinary ingredients to create healthier products (for example, low-fat dressings, sauces, dips, and beverages).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2011.02576.xDOI Listing

Publication Analysis

Top Keywords

secondary emulsions
16
emulsions
13
secondary layers
12
stability
9
stability bilayer
8
bilayer emulsions
8
secondary
8
primary emulsions
8
nonfat dry
8
dry milk
8

Similar Publications

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.

View Article and Find Full Text PDF

In Situ Proefferocytosis Microspheres as Macrophage Polarity Converters Accelerate Osteoarthritis Treatment.

Small

January 2025

Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, P. R. China.

Efferocytosis in macrophages typically engages an anti-inflammatory positive feedback regulatory mechanism. In osteoarthritis (OA), characterized by imbalanced inflammatory homeostasis, the proinflammatory state of macrophages in the immune microenvironment can be reversed through enhanced efferocytosis. This study develops an in situ proefferocytosis hydrogel microsphere (macrophage polarity converter, H-C@IL) for OA treatment.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!