Objective: Individuals at high risk for chronic cardiometabolic disease (cardiovascular disease [CVD], type 2 diabetes, and chronic kidney disease [CKD]) share many risk factors and would benefit from early intervention. We developed a nonlaboratory-based risk-assessment tool for identification of people at high cardiometabolic disease risk.

Research Design And Methods: Data of three population-based cohorts from different regions of the Netherlands were merged. Participants were 2,840 men and 3,940 women, white, aged 28-85 years, free from CVD, type 2 diabetes, and CKD diagnosis at baseline. The outcome was developing cardiometabolic disease during 7 years follow-up.

Results: Age, BMI, waist circumference, antihypertensive treatment, smoking, family history of myocardial infarction or stroke, and family history of diabetes were significant predictors, whereas former smoking, history of gestational diabetes, and use of lipid-lowering medication were not. The models showed acceptable calibration (Hosmer and Lemeshow statistics, P > 0.05) and discrimination (area under the receiver operating characteristic [ROC] curve 0.82 [95% CI 0.81-0.83] for women and 0.80 [0.78-0.82] for men). Discrimination of individual outcomes was lowest for diabetes (area under the ROC curve 0.70 for men and 0.73 for women) and highest for CVD mortality (0.83 for men and 0.85 for women).

Conclusions: We demonstrate that a single risk stratification tool can identify people at high risk for future CVD, type 2 diabetes, and/or CKD. The present risk-assessment tool can be used for referring the highest risk individuals to health care for further (multivariable) risk assessment and may as such serve as an important part of prevention programs targeting chronic cardiometabolic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308277PMC
http://dx.doi.org/10.2337/dc11-1417DOI Listing

Publication Analysis

Top Keywords

type diabetes
16
cardiometabolic disease
16
risk assessment
8
disease
8
cardiovascular disease
8
diabetes chronic
8
chronic kidney
8
kidney disease
8
high risk
8
chronic cardiometabolic
8

Similar Publications

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

View Article and Find Full Text PDF

Importance: Understanding the interplay between diabetes risk factors and diabetes development is important to develop individual, practice, and population-level prevention strategies.

Objective: To evaluate the progression from normal and impaired fasting glucose levels to diabetes among adults.

Design, Setting, And Participants: This retrospective community-based cohort study used data from the Rochester Epidemiology Project, in Olmsted County, Minnesota, on 44 992 individuals with at least 2 fasting plasma glucose (FPG) measurements from January 1, 2005, to December 31, 2017.

View Article and Find Full Text PDF

GLP-1RA Use and Thyroid Cancer Risk.

JAMA Otolaryngol Head Neck Surg

January 2025

OptumLabs, Eden Prairie, Minnesota.

Importance: The increasing use of glucagon-like peptide-1 receptor agonists (GLP-1RA) demands a better understanding of their association with thyroid cancer.

Objective: To estimate the risk of incident thyroid cancer among adults with type 2 diabetes being treated with GLP-1RA vs other common glucose-lowering medications.

Design, Setting, And Participants: This was a prespecified secondary analysis of a target trial emulation of a comparative effectiveness study using claims data for enrollees in commercial, Medicare Advantage, and Medicare fee-for-service plans across the US.

View Article and Find Full Text PDF

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Purpose: Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!