Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/dds036 | DOI Listing |
New Phytol
December 2024
College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
Protein isoforms (PIs) play pivotal roles in regulating plant growth and development that confer adaptability to diverse environmental conditions. PIs are widely present in plants and generated through alternative splicing (AS), alternative polyadenylation (APA), alternative initiation (AI), and ribosomal frameshifting (RF) events. The widespread presence of PIs not only significantly increases the complexity of genomic information but also greatly enriches regulatory networks and enhances their flexibility.
View Article and Find Full Text PDFJ Clin Immunol
November 2024
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, Genova, Italy.
Multisystem inflammatory syndrome in children (MIS-C) has been reported in patients with inborn errors of immunity (IEI), providing insights into disease pathogenesis. Here, we present the first case of MIS-C in a child affected by Wiskott-Aldrich syndrome (WAS) gene mutation, elucidating underlying predisposing factors and the involved inflammatory pathways. Genetic analysis revealed a frameshift truncating variant in the WAS gene, resulting in WAS protein expression between mild and severe forms, despite a clinical phenotype resembling X-linked thrombocytopenia (XLT).
View Article and Find Full Text PDFMicrob Pathog
January 2025
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China. Electronic address:
Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing Tuberculosis (TB) and understanding its mechanisms of virulence, persistence, and pathogenesis is a global research priority. Attenuated strains of Mtb are valuable tools for investigating the genes and proteins involved in these processes. In this study, we identified an Mtb mutant, H37Rv-S, which exhibits a shorter mycelium, smoother colony, slower growth, and reduced antibiotics resistance compared to the wild-type strain H37Rv.
View Article and Find Full Text PDFDiabetologia
January 2025
Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
Aims/hypothesis: Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA.
Pro-death Bax family member, Bax∆2, forms protein aggregates in Alzheimer's disease neurons and causes stress granule-mediated neuronal death. Production of Bax∆2 originated from two events: alternative splicing of Bax exon 2 and a microsatellite mutation (a deletion from poly guanines, G8 to G7). Each event alone leads to a reading frameshift and premature termination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!