First-principles investigation of the electronic and conducting properties of oligothienoacenes and their derivatives.

Chem Asian J

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.

Published: May 2012

Herein, we calculated reorganization energies, vertical ionization energies, electron affinities, and HOMO-LUMO gaps of fused thiophenes and their derivatives, and analyzed the influence of different substituents on their electronic properties. Furthermore, we simulated the angular resolution anisotropic mobility for both electron- and hole-transport, based on quantum-chemical calculations combined with the Marcus-Hush electron-transfer theory. We showed that: 1) styrene-group substitution can effectively elevate the HOMO energy level and lower the LUMO energy level, and therefore lower both the hole- and electron-injection barriers; and 2) chemical oxidation of the thiophene ring can significantly improve the semiconductor properties of the fused oligothiophenes through a decrease of the injection barrier and an increase in the charge-transfer mobility for electrons but without lowering their hole-transfer mobilities, which suggests that it may be a promising way to convert p-type semiconductors into ambipolar or n-type semiconductor materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201100904DOI Listing

Publication Analysis

Top Keywords

energy level
8
level lower
8
first-principles investigation
4
investigation electronic
4
electronic conducting
4
conducting properties
4
properties oligothienoacenes
4
oligothienoacenes derivatives
4
derivatives calculated
4
calculated reorganization
4

Similar Publications

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides.

Nat Commun

January 2025

Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.

Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.

View Article and Find Full Text PDF

Objective: To compare physical activity (PA) over midlife between (1) former collegiate athletes and non-athletes and (2) among athletes in different sports.

Methods: The Harvard Alumni Health Study (HAHS) is a prospective cohort study of male undergraduates who completed serial questionnaires regarding PA and health status between 1962 and 1993. PA was categorised by intensity (<3 METs, light; 3 to <6 METs, moderate; ≥6 METs, vigorous), and energy expenditure (kilocalories (kcal)/week) was estimated at each intensity and in total.

View Article and Find Full Text PDF

Transcriptome-wide N-methyladenosinem modifications analysis of growth and fumonisins production in Fusarium proliferatum causing banana crown rot.

Int J Biol Macromol

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N-methyladenosine (mA) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in mA methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!