Traditionally, type 1 diabetes (T1D) has been thought of as a disease of cellular immunity, but there is increasing evidence that components of the innate immune system, controlled largely by Toll-like receptors (TLRs), play a significant role in T1D development. TLRs are pattern-recognition molecules on immune cells that recognize pathogens, leading to the production of cytokines such as interleukin-1β (IL1β, encoded by the IL1B gene). IL1β is increased in patients with newly diagnosed T1D and likely acts as an early inflammatory signal in T1D development. Because hyperglycemia is a hallmark of T1D, the effects of hyperglycemia on IL1β expression in peripheral blood mononuclear cells (PBMCs) and islet cells have been examined, but with inconsistent results, and the mechanisms leading to this increase remain unknown. Fatty acids stimulate IL1β expression and may promote inflammation, causing hyperglycemia and insulin resistance. The mechanisms by which IL1β is involved in T1D pathogenesis are controversial. Overall, studies in pancreatic β-cells suggest that IL1β-mediated damage to islet cells involves multiple downstream targets. Potential therapies to decrease the progression of T1D based on IL1β biology include pioglitazone, glyburide, IL1 receptor antagonists, and agents that remove IL1β from the circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/pr.2012.24DOI Listing

Publication Analysis

Top Keywords

toll-like receptors
8
type diabetes
8
t1d development
8
il1β expression
8
islet cells
8
t1d
7
il1β
7
receptors nlrp3
4
nlrp3 inflammasome
4
inflammasome interleukin-1β
4

Similar Publications

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Unveiling the Molecular Mechanisms of Rosacea: Insights From Transcriptomics and In Vitro Experiments.

J Cosmet Dermatol

January 2025

Department of Plastic and Cosmetic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China.

Background: Rosacea is a prevalent inflammatory skin condition, but its molecular mechanisms and treatment responses remain poorly understood.

Aims: This study aims to investigate the molecular mechanisms underlying rosacea and explore drug response through transcriptomic analysis and in vitro experiments.

Patients/methods: We performed high-throughput RNA sequencing to analyze gene expression patterns in rosacea patients.

View Article and Find Full Text PDF

Background: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.

Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.

View Article and Find Full Text PDF

Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae.

PLoS One

January 2025

Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.

Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!