Celecoxib pathways: pharmacokinetics and pharmacodynamics.

Pharmacogenet Genomics

Department of Genetics, Stanford University, Stanford, California, USA.

Published: April 2012

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303994PMC
http://dx.doi.org/10.1097/FPC.0b013e32834f94cbDOI Listing

Publication Analysis

Top Keywords

celecoxib pathways
4
pathways pharmacokinetics
4
pharmacokinetics pharmacodynamics
4
celecoxib
1
pharmacokinetics
1
pharmacodynamics
1

Similar Publications

In order to elucidate the therapeutic effect and mechanism of action of Zhengqing Fengtongning Sustained-release Tablets on knee osteoarthritis, this study created a knee osteoarthritis model using 0.2 mL 40 g·L~(-1) papain and randomly divided the rats into the model group, high-dose and low-dose groups of Zhengqing Fengtongning Sustained-release Tablets, and celecoxib group. All groups were given the drug for four weeks, with the diameter of their knee joint being measured during this period.

View Article and Find Full Text PDF

Inflammation and oxidative stress are crucial for osteoarthritis (OA) pathogenesis. Despite the potential of pharmacological pretreatment of chondrocytes in preventing OA, its efficacy in preventing the progression of cartilage damage and promoting its recovery has not been examined. In this study, an HO-induced human OA-like chondrocyte cell model was created using H1467 primary human chondrocytes to evaluate the efficacy of interleukin (IL)-6 and cyclooxygenase (COX)-2 inhibitors (tocilizumab and celecoxib, respectively) in the prevention and treatment of cartilage damage.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma (SACC) is an intractable malignant tumor originates in the secretory glands and frequently metastasizes to the lungs. Hybrid epithelial-mesenchymal transition (EMT) cells within the tumors are correlated with augmented proliferative capacity and facilitation of lung metastasis. Single-cell RNA sequencing and spatial transcriptomic sequencing are employed to reveal the hybrid EMT subsets within the vascular fibroblast microenvironment.

View Article and Find Full Text PDF

The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats.

Neurochem Int

December 2024

Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan. Electronic address:

Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!