A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase.

RNA Biol

Instituto de Biología Molecular y Celular de Plantas-Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Avenida de los Naranjos, Valencia, Spain.

Published: March 2012

AI Article Synopsis

  • Bacteria and archaea possess a 2'-5' RNA ligase that creates 2',5'-phosphodiester bonds by sealing specific RNA termini.
  • Researchers discovered a similar RNA ligase in spinach chloroplasts that can circularize replication intermediates of certain viroids, producing circular RNA linked by a unique bond.
  • This spinach enzyme does not need divalent cations or NTPs, and its role in viroid replication is uncertain, but its discovery in higher plants hints at an important, yet unexplored, biological function.

Article Abstract

Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.

Download full-text PDF

Source
http://dx.doi.org/10.4161/rna.19218DOI Listing

Publication Analysis

Top Keywords

rna ligase
32
ligase activity
12
bacterial archaeal
12
2'-5' rna
12
chloroplastic rna
8
ligase
8
rna
8
2'3'-cyclic phosphodiester
8
2'5'-phosphodiester bond
8
activity analogous
4

Similar Publications

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

Multimodal study of Alzheimer's disease (AD) dorsolateral prefrontal cortex (DLPFC) showed AD-related aberrant intron retention (IR) and proteomic changes not observed at the RNA level. However, the role of sex and how IR may impact the proteome are unclear. Analysis of DLPFC transcriptome showed a clear sex-biased pattern where female AD had 1645 elevated IR events compared to 80 in male AD DLPFC.

View Article and Find Full Text PDF

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells.

Biochem Biophys Res Commun

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China. Electronic address:

Article Synopsis
  • Neurodevelopmental abnormalities contribute to various neurological disorders, with ubiquitination being crucial for embryonic development and neurodevelopment.
  • Cnot4, an E3-ubiquitin ligase, was studied for its role in mouse embryonic stem cells (ESCs) where its ubiquitination-deficit led to decreased proliferation and increased ectodermal differentiation.
  • RNA sequencing revealed that genes linked to glucose metabolism and calcium signaling were affected, indicating Cnot4's significant role in regulating ESC behavior through ubiquitination.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!