A novel series of 5-(5-nitrofuran-2-yl)-1,3,4-thiadiazol-2-amines were synthesized by introducing N-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl] moiety as a new functionality on the C-2 amine of thiadiazole ring via click chemistry. The title compounds namely, N-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-5-(5-nitrofuran-2-yl)-1,3,4-thiadiazol-2-amines (3a-n) were characterized by IR, NMR and MS spectra. These compounds were evaluated for their in vitro anti-leishmanial activity against promostigote form of the Leishmania major. Most compounds exhibited good anti-leishmanial activity against the promastigote form of L. major. The most active compound against promostigotes was found to be 4-methylbenzyl analog 3i, which significantly decreases the number of intracellular amastigotes per macrophage, percentage of macrophage infectivity and infectivity index.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2012.01.046DOI Listing

Publication Analysis

Top Keywords

anti-leishmanial activity
12
synthesis anti-leishmanial
4
activity 5-5-nitrofuran-2-yl-134-thiadiazol-2-amines
4
5-5-nitrofuran-2-yl-134-thiadiazol-2-amines n-[1-benzyl-1h-123-triazol-4-ylmethyl]
4
n-[1-benzyl-1h-123-triazol-4-ylmethyl] moieties
4
moieties novel
4
novel series
4
series 5-5-nitrofuran-2-yl-134-thiadiazol-2-amines
4
5-5-nitrofuran-2-yl-134-thiadiazol-2-amines synthesized
4
synthesized introducing
4

Similar Publications

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

Unlabelled: Visceral leishmaniasis (VL), caused by , remains challenging to treat due to severe side effects and increasing drug resistance associated with current chemotherapies. Our study investigates the anti-leishmanial potential of from Uttarakhand, India, with extracts prepared from leaves and stems using ethanol and hexane. Advanced GC-MS analysis identified over 100 bioactive compounds, which were screened using molecular docking to assess their binding to LdHEL-67, a DDX3-DEAD box RNA helicase of donovani.

View Article and Find Full Text PDF

Anti-leishmanial activity of Hypericum Scabrum extract against Leishmania major.

AMB Express

December 2024

Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran.

Leishmaniasis is a vector-borne disease and one of the most significant neglected tropical diseases. Current anti-leishmanial treatments are often ineffective over extended periods and are associated with toxic side effects, highlighting the urgent need for new, effective, and safe alternative treatments for this infectious disease. The objective of this study was to evaluate the anti-leishmanial effects of a hydroalcoholic extract of Hypericum scabrum (H.

View Article and Find Full Text PDF

Leishmaniasis, a neglected tropical disease caused by various Leishmania species, poses a significant global health challenge, especially in resource-limited regions. Visceral Leishmaniasis (VL) stands out among its severe manifestations, and current drug therapies have limitations, necessitating the exploration of new, cost-effective treatments. This study utilized a comprehensive computational workflow, integrating traditional 2D-QSAR, q-RASAR, and molecular docking to identify novel anti-leishmanial compounds, with a focus on Glycyl-tRNA Synthetase (LdGlyRS) as a promising drug target.

View Article and Find Full Text PDF
Article Synopsis
  • * Histidyl-tRNA synthetase (HisRS) is a vital enzyme for the growth and survival of Leishmania donovani, as shown by significant reductions in its mRNA levels and parasite virulence when silenced using RNA interference (siRNA).
  • * Halofuginone emerged as a promising potential inhibitor for LdHisRS, demonstrating strong binding and the ability to block substrate access, suggesting it could be developed into an effective anti-leishmanial drug.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!