How hot electrons relax in semiconductor quantum dots is of critical importance to many potential applications, such as solar energy conversion, light emission, and photon detection. A quantitative answer to this question has not been possible due in part to limitations of current experimental techniques in probing hot electron populations. Here we use femtosecond time-resolved two-photon photoemission spectroscopy to carry out a complete mapping in time- and energy-domains of hot electron relaxation and multiexciton generation (MEG) dynamics in lead selenide quantum dots functionalized with 1,2-ethanedithiols. We find a linear scaling law between the hot electron relaxation rate and its energy above the conduction band minimum. There is no evidence of MEG from intraband hot electron relaxation for excitation photon energy as high as three times the bandgap (3E(g)). Rather, MEG occurs in this system only from interband hot electron transitions at sufficiently high photon energies (~4E(g)).

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl204489aDOI Listing

Publication Analysis

Top Keywords

hot electron
20
quantum dots
12
electron relaxation
12
hot
6
electron
5
direct mapping
4
mapping hot-electron
4
relaxation
4
hot-electron relaxation
4
relaxation multiplication
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!