We measured the effect of a model membrane-binding protein on line tension and morphology of phase-separated lipid-bilayer vesicles. We studied giant unilamellar vesicles composed of a cholesterol/dioleoylphosphatidylcholine/palmitoylsphingomyelin mixture and a controlled mole fraction of a Ni-chelating lipid. These vesicles exhibited two coexisting fluid-phase domains at room temperature. Owing to the line tension, σ, between the two phases, the boundary between them was pulled like a purse string so that the smaller domain formed a bud. While observing the vesicles in a microscope, histidine-tagged green fluorescent protein was added, which bound to the Ni-chelating lipid. As protein bound, the vesicle shape changed and the length of the phase boundary increased. The change in morphology was attributed to a reduction of σ between the two phases because of preferential accumulation of histidine-tagged green fluorescent protein-Ni-chelating lipid clusters at the domain boundary. Greater reductions of σ were found in samples with higher concentrations of Ni-chelating lipid; this trend provided an estimate of the binding energy at the boundary, approximately k(B)T. The results show how domain boundaries can lead to an accumulation of membrane-binding proteins at their boundaries and, in turn, how proteins can alter line tension and vesicle morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la204225a | DOI Listing |
Int J Mol Sci
December 2023
Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy.
The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy.
View Article and Find Full Text PDFJ Sep Sci
September 2021
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
A novel nanodisc-based immobilization method was developed for high-efficient purification and reconstitution of cytochrome P450 in one step. Using membrane scaffold protein containing a histidine tag, charged-nanodiscs were prepared in the form of self-assembly of lipid-protein nanoparticles. Their properties including the particle diameter and its distribution and Zeta potential were controlled well by adjusting molar ratios of phospholipids to membrane scaffold protein.
View Article and Find Full Text PDFJ Thromb Haemost
June 2020
Center for Innovation, Canadian Blood Services, Vancouver, BC, Canada.
Background: The cell membrane-derived initiators of coagulation, tissue factor (TF) and anionic phospholipid (aPL), are constitutive on the herpes simplex virus type 1 (HSV1) surface, bypassing physiological regulation. TF and aPL accelerate proteolytic activation of factor (F) X to FXa by FVIIa to induce clot formation and cell signaling. Thus, infection in vivo is enhanced by virus surface TF.
View Article and Find Full Text PDFAnalyst
April 2018
Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR CNRS 5246, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France.
A new prototype of a membrane protein biochip is presented in this article. This biochip was created by the combination of novel technologies of peptide-tethered bilayer lipid membrane (pep-tBLM) formation and solid support micropatterning. Pep-tBLMs integrating a membrane protein were obtained in the form of microarrays on a gold chip.
View Article and Find Full Text PDFBiotechnol J
April 2018
Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, PO Box 30001, HPC EB88, NL-9700 RB, Groningen, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!