Study Objectives: Severe events of respiratory distress can be life threatening. Although rare in some outpatient settings, effective recognition and management are essential to improving outcomes. The value of high-fidelity simulation has not been assessed for sleep technologists (STs). We hypothesized that knowledge of and comfort level in managing emergent pediatric respiratory events would improve with this innovative method.

Methods: We designed a course that utilized high-fidelity human patient simulators (HPS) and that focused on rapid pediatric assessment of young children in the first 5 minutes of an emergency. We assessed knowledge of and comfort with critical emergencies that STs may encounter in a pediatric sleep center utilizing a pre/post-test study design.

Results: Ten STs enrolled in the study, and scores from the pre- and posttest were compared utilizing a paired samples t-test. Mean participant age was 42 ± 11 years, with average of 9.3 ± 3.3 years of ST experience but minimal experience in managing an actual emergency. Average pretest score was 54% ± 17% correct and improved to 69% ± 16% after the educational intervention (p < 0.05). Participant ratings indicated the course was a well-received, innovative educational methodology.

Conclusions: A simulation course focusing on respiratory emergencies requiring basic life support skills during the first 5 min of distress can significantly improve the knowledge of STs. Simulation may provide a highly useful methodology for training STs in the management of rare life-threatening events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266328PMC
http://dx.doi.org/10.5664/jcsm.1672DOI Listing

Publication Analysis

Top Keywords

high-fidelity simulation
8
sleep technologists
8
pediatric sleep
8
knowledge comfort
8
sts
5
simulation training
4
sleep
4
training sleep
4
pediatric
4
technologists pediatric
4

Similar Publications

Background: We aimed to measure the effect of a 2-day structured paediatric simulation-based training (SBT) on basic and advanced airway management during simulated paediatric resuscitations.

Methods: Standardised paediatric high-fidelity SBT was conducted in 12 of the 15 children's hospitals in Hesse, Germany. Before and after the SBT the study participants took part in two study scenarios (PRE and POST scenario), which were recorded using an audio-video system.

View Article and Find Full Text PDF

Data-driven calibration methods have shown promising results for accurate proprioception in soft robotics. This process can be greatly benefited by adopting numerical simulation for computational efficiency. However, the gap between the simulated and real domains limits the accurate, generalized application of the approach.

View Article and Find Full Text PDF

Multi-step optimization with operational scenarios for hull form and propulsor design for pod-driven cruise ships.

Heliyon

December 2024

State Key Laboratory of Ocean Engineering, School of Naval Architecture, Civil and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

With the increasing demand for reducing CO2 emissions by the International Maritime Organization (IMO), controlling a ship's energy consumption at the design stage is crucial for proposing a 'greener' design. Some efforts have been made to consider the Energy Efficiency Design Index (EEDI) and the Energy Efficiency Operational Index (EEOI); however, the latter remains highly complex and contentious. In this study, a multistep optimization analysis method was developed to integrate EEDI and EEOI evaluations during the design stage to meet low emission requirements.

View Article and Find Full Text PDF

Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).

View Article and Find Full Text PDF

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!