Study Design: Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc.
Objective: To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content.
Summary Of Background Data: There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content.
Methods: Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model.
Results: Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics.
Conclusion: Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377819 | PMC |
http://dx.doi.org/10.1097/BRS.0b013e31824d911c | DOI Listing |
Chem Sci
December 2024
ByteDance Research Bellevue Washington 98004 USA
A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.
View Article and Find Full Text PDFJOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFACS Macro Lett
January 2025
The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland.
BMC Oral Health
January 2025
Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.
Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.
Biomater Adv
January 2025
Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milan, Italy; Local Unit Politecnico di Milano, Milan, Italy. Electronic address:
Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!