We have previously reported that the transfection efficiency of laminin-derived AG73-peptide labeled polyethyleneglycol-modified liposomes (AG73-PEG liposomes) was enhanced by echo-contrast gas entrapping PEG liposomes (Bubble liposomes, BLs) and ultrasound (US) exposure by improving endosomal escape. However, it has not been well understood whether BLs and US exposure can enhance the transfection efficiency of other carriers except AG73-PEG liposomes. In this study, to evaluate whether BLs and US exposure can be generally applied to gene delivery carriers, we focused on folate as a model ligand and examined whether BLs and US exposure could enhance the transfection efficiency of folate-PEG liposomes. Folate-PEG liposomes could internalize into cells efficiently, whereas they could not deliver genes into cytosol from endosomes sufficiently. BLs and US exposure could enhance the transfection efficiency of folate-PEG liposomes compared with folate-PEG liposomes alone without their direct induction into cells. These results suggested that BLs and US exposure could enhance the transfection efficiency of folate-PEG liposomes in the same manner as AG73-PEG liposomes. Thus, BLs and US exposure may be a promising tool to achieve efficient gene transfection into various gene carriers in general.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1061186X.2012.660162DOI Listing

Publication Analysis

Top Keywords

folate-peg liposomes
24
bls exposure
24
transfection efficiency
20
exposure enhance
16
enhance transfection
16
liposomes
13
ag73-peg liposomes
12
efficiency folate-peg
12
gene delivery
8
bubble liposomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!