Bovine lactoferrin: involvement of metal saturation and carbohydrates in the inhibition of influenza virus infection.

Biochem Cell Biol

Ultrastructural Infectious Pathology Section, Department of Technology and Health, National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy.

Published: June 2012

Influenza is a highly contagious, acute respiratory illness, which represents one of the main plagues worldwide. Even though some antiviral drugs are available, the alarming increase of virus strains resistant to them highlights the need to find new antiviral compounds. As we have recently demonstrated that bovine lactoferrin (bLf) prevents influenza virus-induced apoptosis, in the present wor,k we have attempted to investigate in depth the mechanism of the anti-influenza virus effect of this protein. To this aim, experiments have been carried out whereby different forms of bLf were added to the cells during different phases of viral infection. Results obtained showed that bLf was able to prevent influenza virus cytopathic effects when incubated with the cells after the adsorption step, independently from ion saturation or carbohydrate content. Moreover, the influence of iron saturations or sialic acid/carbohydrates removal on bLf activity on the early phases of infection has been observed. Our results provide further insights on the antiviral activity of bLf and suggest novel strategies for treatment of influenza virus infection.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o11-072DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
bovine lactoferrin
8
virus infection
8
influenza
5
virus
5
blf
5
lactoferrin involvement
4
involvement metal
4
metal saturation
4
saturation carbohydrates
4

Similar Publications

Influenza A virus NS2 protein acts on vRNA-resident polymerase to drive the transcription to replication switch.

Nucleic Acids Res

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.

View Article and Find Full Text PDF

Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.

View Article and Find Full Text PDF

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

Influenza causes 100,000-710,000 hospitalizations annually in the U.S. Patients with liver disease are at higher risk of severe outcomes following influenza infection.

View Article and Find Full Text PDF

IRF1-RIG-I signaling defects in the aged alveolar epithelial cells may contribute to decreased pulmonary antiviral immune responses.

Mech Ageing Dev

January 2025

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China. Electronic address:

Background: Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs.

Methods: The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!