Wound infection development is critically dependent on the complex interactions between bacteria and host. Klebsiella pneumoniae has become an increasingly common wound pathogen, but its natural history within wounds has never been studied. Using a validated, in vivo rabbit ear model, wounds were inoculated with K. pneumoniae at different concentrations (10²-10⁷ colony-forming units) with measurement of viable and nonviable bacterial counts, histological wound-healing parameters, and host inflammatory gene expression at multiple time points postinoculation (48, 96, and 240 hours). Bacteria and wound morphologies were evaluated with scanning electron microscopy. Comparable experiments were performed in ischemic ears to model immune response impairment. All wounds, despite different inoculants, equilibrated to similar bacterial concentrations by 96 hours. With a 10⁶ colony-forming units inoculant, wounds at 240 hours showed decreased bacterial counts (p < 0.01), with a corresponding improvement in healing (p < 0.01) and a decrease in inflammatory response (p < 0.05). In contrast, ischemic wounds revealed impaired inflammatory gene expression (p < 0.05) resulting in higher steady-state bacterial concentrations (p < 0.01), impaired healing (p < 0.05), and biofilm formation on scanning electron microscopy. We conclude that a normal inflammatory response can effectively stabilize and overcome a K. pneumoniae wound infection. An impaired host cannot control this bacterial burden, preventing adequate healing while allowing bacteria to establish a chronic presence. Our novel study quantitatively validates the host immune response as integral to wound infection dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1524-475X.2012.00764.xDOI Listing

Publication Analysis

Top Keywords

host inflammatory
8
wound infection
8
klebsiella pneumoniae
8
rabbit ear
8
colony-forming units
8
bacterial counts
8
240 hours
8
wound
5
understanding host
4
inflammatory response
4

Similar Publications

Associations of serum and tissue TIMP1 with host response and survival in colorectal cancer.

Sci Rep

January 2025

Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland.

Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is a multifaceted, cytokine-like bioactive molecule whose levels are elevated in a wide range of inflammatory diseases and are associated with prognosis. Additionally, TIMP1 may play a role in driving systemic inflammation. TIMP1 immunohistochemistry and TIMP1 serum concentrations were analyzed in a cohort of 776 colorectal cancer patients.

View Article and Find Full Text PDF

D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of D-allulose 3-epimerase (Bp-DAE) and L-rhamnose isomerase (BsL-RI) within a single cell using WB800N as the host.

View Article and Find Full Text PDF

Objectives: Sepsis, a critical condition caused by a dysregulated host response to infection, has high morbidity and mortality rates. Timely diagnosis and treatment are vital for improving patient outcomes. This study explores the potential role of CXCL5 in the diagnosis, severity assessment, and prognosis of sepsis.

View Article and Find Full Text PDF

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:

The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!