Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Melatonin was considered to be the sole member of this natural family. The emergence of naturally occurring melatonin isomers (MIs) has opened an exciting new research area. Currently, several MIs have been identified in wine, and these molecules are believed to be synthesized by either yeasts or bacteria. A tentative nomenclature for the MIs is proposed in this article. It will be important to explore whether all organisms have the capacity to synthesize MIs, especially under the conditions of environmental stress. These isomers probably share many of the biological functions of melatonin, but their activities seem to exceed those of melatonin. On basis of the limited available information, it seems that MIs differ in their biosynthetic pathways from melatonin. Especially in those compounds in which the aliphatic side chain is not attached to ring atom 3, the starting material may not be tryptophan. Also, the metabolic pathways of MIs remain unknown. This, therefore, is another promising area of research to explore. It is our hypothesis that MIs would increase the performance of yeasts and probiotic bacteria during the processes of fermentation. Therefore, yeasts producing elevated levels of these isomers might have a superior alcohol tolerance and be able to produce higher levels of alcohol. This can be tested by comparing existing yeast strains differing in alcohol tolerance. Selection for MIs may become a strategy for isolating more resistant yeast and Lactobacillus strains, which can be of interest for industrial alcohol production and quality improvements in bacterially fermented foods such as kimchi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-079X.2012.00979.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!