Semi-supervised hashing for large-scale search.

IEEE Trans Pattern Anal Mach Intell

Business Analytics and Mathematical Sciences Department, IBM T.J. Watson Research Center, RM 31-229, 1101 Kitchawan Rd, Rte. 134, Yorktown Heights, NY 10598, USA.

Published: December 2012

Hashing-based approximate nearest neighbor (ANN) search in huge databases has become popular due to its computational and memory efficiency. The popular hashing methods, e.g., Locality Sensitive Hashing and Spectral Hashing, construct hash functions based on random or principal projections. The resulting hashes are either not very accurate or are inefficient. Moreover, these methods are designed for a given metric similarity. On the contrary, semantic similarity is usually given in terms of pairwise labels of samples. There exist supervised hashing methods that can handle such semantic similarity, but they are prone to overfitting when labeled data are small or noisy. In this work, we propose a semi-supervised hashing (SSH) framework that minimizes empirical error over the labeled set and an information theoretic regularizer over both labeled and unlabeled sets. Based on this framework, we present three different semi-supervised hashing methods, including orthogonal hashing, nonorthogonal hashing, and sequential hashing. Particularly, the sequential hashing method generates robust codes in which each hash function is designed to correct the errors made by the previous ones. We further show that the sequential learning paradigm can be extended to unsupervised domains where no labeled pairs are available. Extensive experiments on four large datasets (up to 80 million samples) demonstrate the superior performance of the proposed SSH methods over state-of-the-art supervised and unsupervised hashing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2012.48DOI Listing

Publication Analysis

Top Keywords

semi-supervised hashing
12
hashing methods
12
hashing
11
semantic similarity
8
hashing sequential
8
sequential hashing
8
methods
5
hashing large-scale
4
large-scale search
4
search hashing-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!