Purpose: [(18)F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in "whole-tumor" volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR(glc)) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake.

Methods And Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR(glc) images, tumors were segmented in quartiles of background subtracted maximum MR(glc) (0%-25%, 25%-50%, 50%-75%, and 75%-100%). Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR(glc) to determine the rate constants of FDG metabolism.

Results: From the highest to the lowest quartile, significant decreases of uptake (K(1)), washout (k(2)), and phosphorylation (k(3)) rate constants were seen with significant increases in tissue blood volume fraction (V(b)).

Conclusions: Tumor regions with highest MR(glc) are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2011.11.039DOI Listing

Publication Analysis

Top Keywords

rate constants
20
phosphorylation rate
16
blood volume
12
two-tissue compartment
8
highest mrglc
8
uptake washout
8
washout phosphorylation
8
volume fraction
8
cellular uptake
8
rate
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!