A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amyloids as Sensors and Protectors (ASAP) hypothesis. | LitMetric

Amyloids as Sensors and Protectors (ASAP) hypothesis.

J Alzheimers Dis

Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.

Published: August 2012

This paper propounds the Amyloids as Sensors and Protectors (ASAP) hypothesis. In this novel hypothesis, we provide evidence that amyloids are capable of sensing dysfunction, and after misfolding, initiate protective cellular responses. Amyloid proteins are initially protective, but chronic stress and overstimulation of the amyloid sensor leads to pathology. This proposed ASAP hypothesis has two sequential stages: (i) sensing, and then (ii) protection. Sensing involves a conformational change of amyloids in response to the cellular environment. The protection aspect translates conformational change into a cellular response via several mechanisms. The most obvious mechanism is that protein misfolding triggers the protective unfolded protein response, and thus downregulates protein translation and increases chaperone proteins. Other documented responses include metabolic pathways and microRNAs. This ASAP hypothesis has precedence, as amyloid sensors exist (evidenced by CPEB and Sup35), and both prion and amyloid-β sensing redox stress and metals. Our hypothesis expands on previous observations to link sensing with inciting protective cellular response. Furthermore, we substantiate the ASAP hypothesis with previously published evidence from several amyloid diseases. This novel hypothesis links disparate findings in amyloid diseases: metabolic dysfunction, unfolding protein response/chaperones, modification of amyloids, and nutrient or caloric sensing. While this hypothesis can be applied to Alzheimer's disease, it goes beyond the Alzheimer's context. Thus all amyloid proteins can potentially act as sensors of misfolding-causing stress. Finally, this hypothesis will allow for the sensor mechanism and metabolic dysfunction to serve as biomarkers of the diseases as well as therapeutic targets early in disease pathology.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2012-112015DOI Listing

Publication Analysis

Top Keywords

asap hypothesis
20
hypothesis
10
amyloids sensors
8
sensors protectors
8
protectors asap
8
novel hypothesis
8
protective cellular
8
amyloid proteins
8
conformational change
8
cellular response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!