We measured daily intracage ammonia levels and performed weekly assessments of CD1 male, female, and breeder mice housed within disposable, ventilated cages that remained unchanged for 28 d. We tested housing groups comprising 1, 3, or 5 sex-matched mice per cage and breeder pairs with litters. Mice housed in cages with higher concentrations of ammonia developed degeneration and inflammatory lesions in the nasal passages. Mean ammonia exposure levels that caused rhinitis were 181 ppm for 18 d. Ammonia exposures of 93 ppm for 16 d caused necrosis of the olfactory epithelium, whereas 52 ppm for 13 d caused epithelial degeneration. Observers could not detect visible signs of rhinitis or identify cages with elevated ammonia levels, nor did they identify any sick or distressed mice. Observers consistently assigned poorer welfare scores as cages became dirtier. We conclude that we can extend the cage-change interval to at least 28 d for disposable, ventilated caging housing a single CD1 mouse. Cages containing 3 CD1 mice of either sex should be changed biweekly, and cages containing 5 CD1 mice or breeder pairs should be changed at least once weekly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228923 | PMC |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFInt J Clin Pharmacol Ther
January 2025
Objective: Valproic acid, frequently prescribed for neurological and psychiatric disorders, can cause hyperammonemia (HA). This retrospective study aimed to investigate the association among the basic characteristics, comorbidities, co-medications, and risk of HA in patients receiving valproic acid.
Materials And Methods: We compared groups with and without HA using data collected from the medical records of adults undergoing valproic acid monitoring between January 1, 2019, and December 31, 2021.
Microbiol Spectr
January 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases .
View Article and Find Full Text PDFBMC Vet Res
January 2025
Animal Production Department, National Research Centre, Cairo, Egypt.
Background: The use of a high-concentrate diet in fattening camels may have significant effects on growth performance and digestion as well as economic returns. This experiment was designed to study the effects of feeding different levels of concentrate in their diet on growth performance and digestion in a desert climate.
Methods: Eighteen 12-month-old male camel calves were used, and divided into three treatments of six each.
BMJ Case Rep
January 2025
Trident Medical Center, North Charleston, South Carolina, USA.
As an emerging toxic recreational drug, kratom use has been associated with a range of adverse effects, but reports of structural changes in the central nervous system are rare. We report a case of a young man in his 20s with a history of anxiety and depression who presented with an altered mental status and anterograde and retrograde amnesia following kratom use. His labs showed elevated alanine aminotransferase and ammonia levels, and his MRI revealed bilateral hippocampal T2 hyperintensity signal changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!