The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2012.01.015DOI Listing

Publication Analysis

Top Keywords

glycan nanoprofiling
12
powerful approach
8
external standardization
8
single glycan
8
glycans
6
glycan
6
online nanoliquid
4
nanoliquid chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry nanofluorescence
4

Similar Publications

The structural characterization and quantification of the glycome of cells and glycoproteins is necessary for the understanding of glycan functions in Biology, the development of diagnostics tests, and the monitoring of glycoprotein pharmaceuticals. Classical N-glycan characterization methods involve enzymatic release followed by derivatization with a fluorochrome and separation by normal-phase HPLC. We have recently developed glycan nanoprofiling, a method for the simultaneous quantification and characterization of the N-glycans without the need of external standardization.

View Article and Find Full Text PDF

The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!