A novel fiber-optic twist sensor based on a dual-polarization distributed Bragg reflector (DBR) fiber grating laser is proposed and experimentally demonstrated. By beating the signal between the two polarizations of the laser which operates at 1543.154 nm, a signal of 30.78 MHz in frequency domain is observed. The twist will change the fiber birefringence, and resulting in the beat frequency variation between the two polarization modes from the fiber laser. The result shows the beat frequency shifts as a Sinc function curve with the twist angle and both the measuring curve period and twist sensitivity depend on the twist length of the laser cavity. A high twist sensitivity of 6.68 MHz/rad has been obtained at the twist length of 17.5 cm. Moreover, the sensor is insensitive to the environmental temperature, as well as strain along the fiber axis with ultralow beat frequency coefficients, making temperature and axial strain compensation unnecessary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.002844 | DOI Listing |
BMJ Open
January 2025
Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
Objectives: To evaluate the association between heart rate on admission and mortality in elderly patients with hip fractures.
Design: A retrospective cohort study.
Setting: At a trauma centre in northwestern China.
Sensors (Basel)
December 2024
Key Laboratory of Science and Technology on Micro-System, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai 200050, China.
Frequency-modulated continuous-wave (FMCW) radar is used to extract range and velocity information from the beat signal. However, the traditional joint range-velocity estimation algorithms often experience significant performances degradation under low signal-to-noise ratio (SNR) conditions. To address this issue, this paper proposes a novel approach utilizing the complementary ensemble empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) to reconstruct the beat signal prior to applying the FFT-Root-MUSIC algorithm for joint range and velocity estimation.
View Article and Find Full Text PDFGlucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFISA Trans
December 2024
Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt. Electronic address:
The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.
Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!