We demonstrate mode-division multiplexed WDM transmission over 50-km of few-mode fiber using the fiber's LP01 and two degenerate LP11 modes. A few-mode EDFA is used to boost the power of the output signal before a few-mode coherent receiver. A 6×6 time-domain MIMO equalizer is used to recover the transmitted data. We also experimentally characterize the 50-km few-mode fiber and the few-mode EDFA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.002668 | DOI Listing |
Biomed Opt Express
January 2025
Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
In fiber-based confocal microscopy, using two separate fibers for illumination and collection enables the use of a few-mode fiber to achieve an effect similar to opening the pinhole in a conventional confocal microscope. In some Fourier-domain applications, however, or when a spectral measurement is involved, the coherent light detection would lead to noticeable spectral modulation artifacts that result from differential mode delay, an effect caused by the multimode propagation in the collection fiber. After eliminating these artifacts by using mode-dependent polarization control, we demonstrate effective spectrally encoded imaging with improved signal efficiency and lower speckle noise, and only a minor, negligible reduction in lateral and axial resolutions.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Institute of Basic Operations Technology, China Telecom Research Institute, Beijing 102209, China.
In this paper, the theoretical model of spontaneous Raman scattering (SpRS) in few-mode fiber (FMF) is discussed. The influence of SpRS on quantum key distribution (QKD) in FMF is evaluated by combining wavelength division multiplexing (WDM) and space division multiplexing (SDM) techniques. On this basis, an improved ring-assisted FMF is designed and characterized; the transmission distance can be increased by up to 54.
View Article and Find Full Text PDFSci Adv
December 2024
Institutionen för Systemteknik, Linköpings Universitet, 581 83 Linköping, Sweden.
Wave-particle duality is one of the most notable and counterintuitive features of quantum mechanics, illustrating that two incompatible observables cannot be measured simultaneously with arbitrary precision. In this work, we experimentally demonstrate the equivalence of wave-particle duality and entropic uncertainty relations using orbital angular momentum (OAM) states of light. Our experiment uses an innovative and reconfigurable platform composed of few-mode optical fibers and photonic lanterns, showcasing the versatility of this technology for quantum information processing.
View Article and Find Full Text PDFRandom lasers with vector modes have garnered widespread attention due to their unique polarization and phase properties and the absence of cavity-defined longitudinal modes. In this work, we propose and demonstrate an all-polarization-maintaining (PM) random fiber laser (RFL) based on a half-open cavity that can simultaneously generate linearly polarized fundamental modes and higher-order modes. Then a cylindrical vector beam (CVB) of azimuthal polarization is generated by the mode superposition method with mode purity exceeding 93.
View Article and Find Full Text PDFThe overlap integrals method, with a fully vectorial formulation, is used to model the selective excitation of the TM mode in a few-mode optical fiber with a radially polarized donut beam, and its coupling to guided modes having a plasmonic character (supermodes). The analyses were performed on a waveguide formed as a step-index few-mode optical fiber coated with a thin gold film, at an operating wavelength of 1310 nm. The waveguide was found to support modes having optical fiber, circular metallic waveguide, and surface plasmon characteristics, depending on geometrical and material parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!