We investigate the ridge-width dependence of the threshold of Quantum Cascade lasers fabricated by wet and dry etching, respectively. The sloped sidewalls resulting from wet etching affect the threshold in two ways as the ridge gets narrower. First, the transverse modes are deeper in the substrate, hence reducing the optical confinement factor. Second, more important, a non-negligible field exists in the lossy SiO2 insulation layer, as a result of transverse magnetic mode coupling to the surface plamon mode at the insulator/metal surface, which increases the waveguide loss. By contrast, dry etching is anisotropic and leads to waveguides with vertical sidewalls, which avoids the shift of the modes to the substrate layer and coupling to the surface plasmons, resulting in improved threshold compared with wet-etched lasers, e.g., for narrow ridge widths below 20 µm, the threshold of a 14 µm wide λ ≈ 14 µm laser by dry etching is ~60% lower than that of a wet-etched laser of the same width, at 80 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.002539 | DOI Listing |
Nano Lett
January 2025
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.
Two-dimensional (2D) semiconductors have attracted a considerable amount of interest as channel materials for future transistors. Patterning of 2D semiconductors is crucial for separating continuous monolayers into independent units. However, the state-of-the-art 2D patterning process is largely based on photolithography and high-energy plasma/RIE etching, leading to unavoidable residues and degraded device uniformity, which remains a critical challenge for the practical application of 2D electronics.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan.
Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Computer Information Science, Korea University, Sejong 30019, Republic of Korea.
Inductively coupled plasma-reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber pressure. The IGZO film showed an excellent etch rate of 83.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China.
Infrared photoluminescence (PL) spectroscopy with micron-scale spatial resolution is essential for the optoelectronic characterization of narrow-gap microstructures and single defects, yet it poses significant challenges due to the exceedingly weak PL signal and strong background thermal emission. This work introduces an infrared micro-PL (μPL) mapping system that achieves a spatial resolution of ∼2 μm, leveraging the inherent advantages of the step-scan Fourier transform infrared spectrometer-based modulated PL technique in the mid- and far-infrared regions. The configuration of the experimental system is described, and a theoretical upper limit of spatial resolution is derived to be about 1.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
This study fabricated 10 μm chip size μLEDs of blue-light GaN based epilayers structure with different mesa processes using dry etching and ion implantation technology. Two ion sources, As and Ar, were applied to implant into the LED structure to achieve material isolation and avoid defects on the mesa sidewall caused by the plasma process. Excellent turn-on behavior was obtained in both ion-implanted samples, which also exhibited lower leakage current compared to the sample fabricated by the dry etching process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!