Rabbit trochlear model of osteochondral allograft transplantation.

Comp Med

Department of Orthopaedic Surgery, University of California, Davis, Medical Center, Sacramento, California, USA.

Published: October 2011

Allografting and autografting of osteochondral tissues is a promising strategy to treat articular cartilage lesions in damaged joints. We developed a new model of fresh osteochondral allografting using the entire rabbit trochlea. The objective of the current study was to demonstrate that this model would achieve reproducible graft-host healing and maintain normal articular cartilage histologic, immunolocalization, and biochemical characteristics after transplantation under diverse storage and transplantation conditions. New Zealand white (n = 8) and Dutch belted (n = 8) rabbits underwent a 2-stage transplantation operation using osteochondral grafts that had been stored for 2 or 4 wk. Trochlear grafts harvested from the left knee were transplanted to the right knee as either autografts or allografts. Grafts were fixed with 22-gauge steel wire or 3-0 nylon suture. Rabbits were euthanized for evaluation at 1, 2, 4, 6, and 12 wk after transplantation. All grafts that remained in vivo for at least 4 wk demonstrated 100% interface healing by microCT. Trabecular bridging was present at the host-graft interface starting at 2 wk after transplantation, with no significant difference in cartilage histology between the various groups. The combined histology scores indicated minimal evidence of osteoarthritis. Immunostaining revealed that superficial zone protein was localized at the surface of all transplants. The rabbit trochlear model met our criteria for a successful model in regard to the ease of the procedure, low rate of surgical complications, relatively large articular cartilage surface area, and amount of host-graft bone interface available for analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193065PMC

Publication Analysis

Top Keywords

articular cartilage
12
rabbit trochlear
8
trochlear model
8
transplantation
6
model
5
osteochondral
4
model osteochondral
4
osteochondral allograft
4
allograft transplantation
4
transplantation allografting
4

Similar Publications

Targeting p21-Positive Senescent Chondrocytes via IL-6R/JAK2 Inhibition to Alleviate Osteoarthritis.

Adv Sci (Weinh)

January 2025

Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.

Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression.

View Article and Find Full Text PDF

Polydeoxynucleotide-Loaded Visible Light Photo-Crosslinked Gelatin Methacrylate Hydrogel: Approach to Accelerating Cartilage Regeneration.

Gels

January 2025

Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea.

Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration.

View Article and Find Full Text PDF

We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.

View Article and Find Full Text PDF

Background: There has been an increasing interest in elbow hemiarthroplasty to circumvent the problems with total elbow arthroplasty for comminuted distal humerus fractures in the elderly. The primary aim of the study is to assess the mid-term clinical and radiological outcomes of patients undergoing TEA and hemiarthroplasty for distal humerus fractures.

Methods: Retrospective analysis of data for patients undergoing hemiarthroplasty for distal humerus fractures (OTA- C3 Comminuted total articular fractures) was done.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!