Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phagocytic NADPH oxidase plays a critical role in superoxide generation in macrophage cells. Small GTPases, including Rac1 and Rac2, have been implicated in the regulation of NADPH oxidase activity. Rap1, which has no effect in a cell-free system of oxidase activation, recently has been proven to colocalize with cytochrome b(558). In addition, neutrophils from rap1A(-/-) mice reduce fMLP-stimulated superoxide production. Here, we tried to determine whether Rap1 also plays a role in the production of superoxide. IgG-opsonized zymosan (IOZ) particles treatment induced Rap1 activation and superoxide generation. Knock-down of Rap1 by si-Rap1 suppressed IOZ-induced superoxide formation. Sh-RhoA also reduced superoxide levels, but 8CPT-2Me-cAMP, an activator of Epac1 (a guanine nucleotide exchange factor (GEF) of Rap1), could recover the levels to the control value. When cells were stimulated by IOZ, Rap1 and Rac1 were translocated to the membrane, and then interacted with p22(phox). 8CPT-2Me-cAMP rescued sh-RhoA-induced reduction of the interaction between Rac1 and p22(phox), and enhanced lysophosphatidic acid (LPA)-induced increase of their interaction. Moreover, Rac1 activity was increased by both LPA and 8CPT-2Me-cAMP when treated with IOZ particles. Si-Vav2 impaired GTP-Rac1 levels in response to 8CPT-2Me-cAMP/IOZ. Phosphorylation of RhoA activates Rac1 in response to IOZ by the enhanced binding of phospho-RhoA to RhoGDI, leading to the release of Rac1 from the Rac1-RhoGDI complex. In conclusion, IOZ treatment induces Rap1 activation and phosphorylation of RhoA, which in turn cause Rac1 activation and promote Rac1 translocation to the membrane leading to binding with p22(phox) that activates NADPH oxidase and produces superoxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!