The principal objective of this study was to evaluate the effects of surface pretreatment with platelet-rich plasma (PRP) on the cellular functions of human bone marrow stromal cells (hBMSCs). The surfaces of tissue culture plates (TCPs) were pretreated by adding PRP followed by centrifugation to bring platelets closer to the surface, followed by incubation for 60 min at 37°C. Then, hBMSCs were seeded onto TCP and TCP pretreated with PRP (TCP-PRP), followed by culture in osteogenic medium. Cell attachment, proliferation, and osteogenic differentiation were evaluated. Field emission scanning electron microscope (FE-SEM; JSM-7401F, JEOL Ltd., Japan) observations were conducted. The attachment of hBMSCs was significantly lower on TCP-PRP than on TCP. However, when the cell numbers were normalized with those observed on day 1 of culture, cellular proliferation on 5 days was significantly higher on TCP-PRP. Alkaline phosphatase activity, an index of early phase of osteoblastic differentiation, was significantly higher on TCP-PRP on day 14. Calcium deposition amount, an index of terminal osteoblastic differentiation, was also significantly higher on TCP-PRP on days 14 and 21. The results of von Kossa staining confirmed that, on day 21, the area of mineralized nodules was significantly larger on TCP-PRP. FE-SEM observation demonstrated that activated platelets and fibrin network covered the surface after PRP treatment. An increase in the number of hBMSCs and their cellular products was evident on the FE-SEM observation, and the fibrin network remained on day 21. Our results demonstrate that a PRP-treated surface enhanced early proliferation and late osteogenic differentiation of hBMSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03008207.2012.656859 | DOI Listing |
J Periodontal Implant Sci
June 2023
Department of Oral & Maxillofacial Surgery, Seoul National University Gwanak Dental Hospital, Seoul, Korea.
Purpose: This study evaluated the efficacy of a tube-shaped poly(ε) caprolactone - β tricalcium phosphate (PCL-TCP) scaffold with the incorporation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) and platelet-rich plasma (PRP) for bone regeneration in the procedure of single-stage sinus augmentation and dental implantation in minipigs.
Methods: Implants were placed in the bilateral sides of the maxillary sinuses of 5 minipigs and allocated to a PCL-TCP+hUCMSCs+PRP group (n=5), a PCL-TCP+PRP group (n=5), and a PCL-TCP-only group (n=6). After 12 weeks, bone regeneration was evaluated with soft X-rays, micro-computed tomography, fluorescence microscopy, and histomorphometric analysis.
Exp Ther Med
November 2014
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
Tricalcium phosphate (TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. The aim of the present study was to investigate a composite that combined TCP with PRP and assess its effectiveness in the treatment of bone defects. Cavity-shaped bone defects were established on the tibiae of 27 beagle dogs, and were repaired by pure β-TCP with bone marrow stromal cells (BMSCs), β-TCP/PRP with BMSCs and autogenic ilium.
View Article and Find Full Text PDFExp Ther Med
October 2014
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
β-tricalcium phosphate (β-TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. In the present study, a new composite combining strengthened β-TCP and PRP was prepared and its morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and material testing. The biocompatibility was evaluated by measuring the adhesion rate and cytotoxicity of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFPLoS One
January 2013
Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
Background: Bone marrow aspirate concentrate (BMAC) including high densities of stem cells and progenitor cells may possess a stronger bone regenerative capability compared with Platelet-rich plasma (PRP), which contains enriched growth factors. The objective of this study was to evaluate the effects of human BMAC and PRP in combination with β-tricalcium phosphate (β-TCP) on promoting initial bone augmentation in an immunodeficient mouse model.
Methodology/principal Findings: BMAC and PRP were concentrated with an automated blood separator from the bone marrow and peripheral blood aspirates.
Connect Tissue Res
March 2013
Department of Orthopedic Surgery, College of Medicine, Seoul National University, Jongno-gu, Seoul, Korea.
The principal objective of this study was to evaluate the effects of surface pretreatment with platelet-rich plasma (PRP) on the cellular functions of human bone marrow stromal cells (hBMSCs). The surfaces of tissue culture plates (TCPs) were pretreated by adding PRP followed by centrifugation to bring platelets closer to the surface, followed by incubation for 60 min at 37°C. Then, hBMSCs were seeded onto TCP and TCP pretreated with PRP (TCP-PRP), followed by culture in osteogenic medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!