It is generally accepted that the permanent arrest of cell division known as cellular senescence contributes to aging by an antagonistic pleiotropy mechanism: cellular senescence would act beneficially early in life by suppressing cancer, but detrimentally later on by causing frailty and, paradoxically, cancer. In this review, we show that there is room to rethink this common view. We propose a critical appraisal of the arguments commonly brought in support of it, and we qualitatively analyse published results that are of relevance to understand whether or not cellular senescence-associated genes really act in an antagonistic-pleiotropic manner in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1474-9726.2012.00807.xDOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
cellular
4
senescence example
4
example antagonistic
4
antagonistic pleiotropy?
4
pleiotropy? generally
4
generally accepted
4
accepted permanent
4
permanent arrest
4
arrest cell
4

Similar Publications

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Maximizing the life-long reproductive output would lead to the prediction that short-lived and fast aging species would undergo no - if any - reproductive senescence. Turquoise killifish (Nothobranchius furzeri) are naturally short-lived teleosts, and undergo extensive somatic aging, characterized by molecular, cellular, and organ dysfunction following the onset of sexual maturation. Here, we tested whether naturally short-lived and fast aging male turquoise killifish maximize reproduction and display minimal - if any, reproductive senescence.

View Article and Find Full Text PDF

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.

View Article and Find Full Text PDF

Lipid metabolic remodeling delays senescence of T cells to potentiate their immunity against solid tumors.

J Immunother Cancer

January 2025

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China

Background: Tumor cells can drive the senescence of effector T cells by unbalancing their lipid metabolism, thereby limiting adoptive T cell therapy and contributing to tumor immune evasion. Our objective is to provide a feasible strategy for enhancing T cell treatment efficacy against solid tumors.

Methods: In this study, liposomal arachidonyl trifluoromethyl ketone (ATK) was anchored onto the adoptive T cell surface via bioorthogonal reactions, aiming to specifically inhibit the group IVA cytosolic phospholipase Aα (cPLAα), a key enzyme facilitating phospholipid metabolism and senescent state of T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!