The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2010.543931 | DOI Listing |
Front Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
Sci Total Environ
November 2024
Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada. Electronic address:
Spilled oil in ocean can spread to the shoreline and cause long-term impacts on the shoreline's ecological environment. Therefore, removing oil accumulated on shorelines is crucial. This study proposed an innovative ovalbumin (OVA) fluid-assisted method for the cleanup of oiled shoreline substrates.
View Article and Find Full Text PDFHeliyon
June 2024
Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru.
Valorization of residual yeast of the bakery industry for use in the remediation of oil-contaminated soils as an emulsifier is a biocompatible and effective process that will reduce environmental pollution. The aim of this study was to use concentrated β-glucan obtained from residual baker's yeast, , as an emulsifier to remove total petroleum hydrocarbons (TPH) from the contaminated sands of two beaches affected by the oil spill that occurred in January 2022 north of Lima, Peru. The extraction and concentration of β-glucan from sand were performed at a pilot scale using autolysis with 3 % sodium chloride, temperature elevation, treatment with organic solvents and water, hydrolysis via proteases, and vacuum filtration.
View Article and Find Full Text PDFSci Total Environ
April 2024
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Microbial remediation of oil-contaminated groundwater is often limited by the low temperature and lack of nutrients in the groundwater environment, resulting in low degradation efficiency and a short duration of effectiveness. In order to overcome this problem, an immobilized composite microbial material and two types of slow release agents (SRA) were creatively prepared. Three oil-degrading bacteria, Serratia marcescens X, Serratia sp.
View Article and Find Full Text PDFArch Microbiol
July 2023
Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!