Escherichia coli cells normally require RNase E activity to propagate and form colonies. Using random Tn10 insertion mutagenesis, we screened for second-site suppressor mutations that restore colony-forming ability (CFA) to E. coli cells lacking RNase E function and found mutations in three separate chromosomal loci that had this phenotype. Restoration of CFA by mutations in two of the genes identified was observed only in nutrient-poor medium, whereas the effects of mutation of the ATP-dependent RNA helicase DeaD were medium independent. Suppression of the rne mutant phenotype by inactivation of deaD was partial, as rne deaD doubly mutant bacteria had a greatly prolonged generation time and grew as filamentous chains in liquid medium. Moreover, we found that CFA restoration by deaD inactivation requires normal expression of the endogenous rng gene in doubly mutant rne deaD cells. Second-site suppression by deaD mutation was attributable specifically to ablation of the helicase activity of DeaD and was reversed by adventitious expression of RhlE or RNase R, both of which can unwind double-stranded RNA. Our results suggest a previously unsuspected role for RNA secondary structure as a determinant of RNase E essentiality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318467 | PMC |
http://dx.doi.org/10.1128/JB.06652-11 | DOI Listing |
PLoS One
June 2024
Botanical Institute, Biocenter, Cologne University, Cologne, Germany.
The plant BEACH-domain protein SPIRRIG (SPI) is involved in regulating cell morphogenesis and salt stress responses in Arabidopsis thaliana, Arabis alpina, and Marchantia polymorpha and was reported to function in the context of two unrelated cellular processes: vesicular trafficking and P-body mediated RNA metabolism. To further explore the molecular function of SPI, we isolated a second-site mutant, specifically rescuing the spi mutant trichome phenotype. The molecular analysis of the corresponding gene revealed a dominant negative mutation in RABE1C, a ras-related small GTP-binding protein that localizes to Golgi.
View Article and Find Full Text PDFPLoS One
April 2024
Department King Faisal Specialized Hospital and Research Center, Cell Therapy & Immunobiology, Riyadh, Saudi Arabia.
Epidermal growth factor receptor EGFR inhibitors are widely used as first line therapy for the treatment of non-small-cell lung cancer (NSCLC) in patients harboring EGFR mutation. However, the acquisition of a second-site mutation (T790 M) limited the efficacy and developed resistance. Therefore, discovery and development of specific drug target for this mutation is of urgent needs.
View Article and Find Full Text PDFJ Virol
February 2024
Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA.
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells.
View Article and Find Full Text PDFDrug Resist Updat
November 2023
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA. Electronic address:
Human P-glycoprotein (P-gp) or ABCB1 is overexpressed in many cancers and has been implicated in altering the bioavailability of chemotherapeutic drugs due to their efflux, resulting in the development of chemoresistance. To elucidate the mechanistic aspects and structure-function relationships of P-gp, we previously utilized a tyrosine (Y)-enriched P-gp mutant (15Y) and demonstrated that at least 15 conserved residues in the drug-binding pocket of P-gp are responsible for optimal substrate interaction and transport. To further understand the role of these 15 residues, two new mutants were generated, namely 6Y with the substitution of six residues (F72, F303, I306, F314, F336 and L339) with Y in transmembrane domain (TMD) 1 and 9Y with nine substitutions (F732, F759, F770, F938, F942, M949, L975, F983 and F994) in TMD2.
View Article and Find Full Text PDFExpert Opin Ther Targets
November 2023
Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA.
Introduction: Epilepsies are disorders of neuronal excitability characterized by spontaneously recurrent focal and generalized seizures, some of which result from genetic mutations. Despite the availability of antiseizure medications, pharmaco-resistant epilepsy is seen in about 23% of epileptic patients worldwide. Therefore, there is an urgent need to develop novel therapeutic strategies for epilepsies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!