Thymosin beta-4 (Tβ4), actin-sequestering protein, plays important roles in many cellular functions including cancer cell migrations. Glycogen synthase kinase (GSK) in Wnt signaling pathway is a key molecule to control intercellular interaction. Here, we investigated whether GSK-3 activity is regulated by Tβ4 and it is associated with Tβ4-mediated migration in gastric cancer cells. Various expression level of Tβ4 was observed in human gastric tumor tissues. Migration in gastric cancer cells, SNU638 and SNU668, was dependent on a relative expression level of Tβ4. Cell migration was higher in SNU668 with a higher expression level of Tβ4 than that in SNU638 with a lower Tβ4. Although the level of phosphorylated(p)-GSK-3α (inactive), β-catenin, E-cadherin and E-cadherin:β-catenin complex was relatively higher, p-GSK-3β (inactive) was lower in SNU638 compared to those in SNU668 cells. LiCl, GSK-3α/β inhibitor, reduced lung metastasis of B16F10 mouse melanoma cells and SNU668 cell migration. Small interference (si)RNA of GSK-3α increased SNU638 cell migration in accordance with the reduction of E-cadherin:β-catenin complex formation through a decrease in β-catenin and E-cadherin. Expression level of GSK-3α/β, β-catenin and E-cadherin in SNU668 and SNU638 was reversed by Tβ4-siRNA and by the treatment with acetylated-serine-aspartic acid-lysine-proline (SDKP) tetrapeptide of Tβ4, respectively. E-cadherin expression in SNU638 cells was decreased by β-catenin-siRNA. PD98059, MEK inhibitor, or U0126, ERK inhibitor, reduced SNU668 cell migration accompanying an increase in p-GSK-3α, β-catenin and E-cadherin. Taken together, data indicated that the expression of GSK-3α, β-catenin and E-cadherin could be negatively regulated by Tβ4-induced ERK phosphorylation. It suggests that Tβ4 could be a novel regulator to control Wnt signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.27490DOI Listing

Publication Analysis

Top Keywords

cell migration
20
β-catenin e-cadherin
20
expression level
16
gastric cancer
12
level tβ4
12
glycogen synthase
8
thymosin beta-4
8
cancer cell
8
tβ4
8
wnt signaling
8

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!