Raman spectra of neat pyrrole (C(4)H(5)N) and its binary mixtures with dichloromethane (CH(2)Cl(2), DCM) with varying mole fractions of C(4)H(5)N from 0.1 to 0.9 were recorded in order to monitor the influence of molecular interaction on spectral features of selected vibrational bands of pyrrole in the region 600-1600 cm(-1). Only 1369 cm(-1) vibrational band of pyrrole shows a significant change in its peak position in going from neat pyrrole to the complexes. The 1369 cm(-1) band shows (∼6 cm(-1)) blue shift upon dilution and the corresponding linewidth shows the maximum shift at C = 0.5 mole fraction of pyrrole upon dilution which clearly indicates that the concentration fluctuation model plays major role. Quantum chemical calculation using density functional theory (DFT) and ab-initio (MP2 and HF) methods were performed employing high level basis set, 6-311++G(d,p) to obtain the ground state geometry of neat pyrrole and its complexes with DCM in gas phase. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. In order to account for the solvent effect on vibrational features and changes in optimized structural parameters of pyrrole, polarizable continuum model (PCM) (bulk solvations) and PCM (specific plus bulk solvations) calculations were performed. Two possible configurations of pyrrole + DCM complex have been predicted by B3LYP and HF methods, whereas the MP2 method gave only single configuration in which H atom of DCM is bonded to π ring of the pyrrole molecule. This affects significantly the ring vibrations of pyrrole molecule, which was also observed in our experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-012-1355-xDOI Listing

Publication Analysis

Top Keywords

neat pyrrole
12
pyrrole
11
1369 cm-1
8
pyrrole complexes
8
basis set
8
bulk solvations
8
pyrrole molecule
8
modeling weak
4
weak hydrogen
4
hydrogen bonding
4

Similar Publications

Iron microparticles were coated with polypyrrole in situ during the chemical oxidation of pyrrole with ammonium peroxydisulfate in aqueous medium. A series of hybrid organic/inorganic core-shell materials were prepared with 30-76 wt% iron content. Polypyrrole coating was revealed by scanning electron microscopy, and its molecular structure and completeness were proved by FTIR and Raman spectroscopies.

View Article and Find Full Text PDF

A trio of Ir(III) complexes that are held together by a picolinamidato moiety were created. In our earlier research, we demonstrated the catalytic activity of the complexes for producing alpha-alkylated ketones from a ketone or secondary alcohol with a primary alcohol in the presence of a catalytic amount of a Cp*Ir(III) catalyst and BuOK in toluene at 110 °C using the hydrogen-borrowing technique. Earlier many research groups had synthesized quinoline, pyrrole, and pyridine derivatives using 2-amino alcohol and ketone or secondary alcohol derivatives as starting materials, but in all those cases the reaction conditions are not suitable in terms of green synthesis like more catalyst loading, base loading, long reaction time, and high temperature.

View Article and Find Full Text PDF

Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the and isomers from synthesis, where each can be isolated using chromatographic techniques.

View Article and Find Full Text PDF

Background: Hemolysis is a common reason for specimen rejection in the laboratory. Our experience suggested that hemolysis (H) flag limits are too strict for some analytes leading to unnecessary specimen rejections. This study summarizes H flags for commonly rejected analytes on the Beckman Coulter DxC 700 AU analyzer.

View Article and Find Full Text PDF

Reducing non-radiative recombination energy loss (ΔE ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (E ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!