Pure antiestrogens were clinically developed as alternative therapies for estrogen receptor (ER) positive breast cancers. Unlike the selective estrogen receptor modulators (SERMs), these antiestrogens are devoid of tissue-specific ER agonist activity. Many of these compounds are steroidal in nature, containing an estradiol (E2) structural core with long alkyl side chains at the C-7α position. Two novel 7α-substituted E2 derivatives were evaluated that retain high binding affinity for ER. Compared to known pure antiestrogens, these compounds, referred to as compound 13 (C13) and C14, contain shorter 7α alkyl side chains and differ only in their terminal substituent: a hydroxyl moiety versus a benzyloxy group, respectively. Herein we assessed the effects of these compounds on ER transcriptional activity and report that despite their similar overall structure, C13 and C14 produce distinct cell type-specific responses. Of note, C13 functions as a mixed agonist/antagonist in Hela cells, inducing only weak ER transcriptional activity while preventing coactivator recruitment and stabilizing ER expression. However, this compound effectively stimulates ER activity in MCF-7 cells, does not increase ER levels and promotes cell proliferation on par with E2. Conversely, C14 stimulates transcriptional activity in both cell types and enhances ER-coactivator interactions. The activities of both compounds were inhibited by the pure antiestrogen ICI 182,780. Taken together, these results reveal that C13 is a SERM while C14 is an ER agonist, and indicate that the terminal modification of the C-7α hexanyl side chain of these estradiol derivatives is an important determinant of the biocharacter of these ER ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303951PMC
http://dx.doi.org/10.1016/j.steroids.2012.01.011DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
12
transcriptional activity
12
selective estrogen
8
pure antiestrogens
8
alkyl side
8
side chains
8
c13 c14
8
activity
5
terminal substituents
4
substituents 7α
4

Similar Publications

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis.

Funct Integr Genomics

January 2025

Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.

Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.

View Article and Find Full Text PDF

Background: Higher concentration of insulin-like growth factor-1 (IGF-1) increases postmenopausal breast cancer risk, but evidence for insulin and c-peptide is limited. Further, not all studies have accounted for potential confounding by biomarkers from other biological pathways, and not all were restricted to estrogen receptor (ER)-positive breast cancer.

Methods: This was a case-cohort study of 1,223 postmenopausal women (347 with ER-positive breast cancer) from the Melbourne Collaborative Cohort Study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!