Pure antiestrogens were clinically developed as alternative therapies for estrogen receptor (ER) positive breast cancers. Unlike the selective estrogen receptor modulators (SERMs), these antiestrogens are devoid of tissue-specific ER agonist activity. Many of these compounds are steroidal in nature, containing an estradiol (E2) structural core with long alkyl side chains at the C-7α position. Two novel 7α-substituted E2 derivatives were evaluated that retain high binding affinity for ER. Compared to known pure antiestrogens, these compounds, referred to as compound 13 (C13) and C14, contain shorter 7α alkyl side chains and differ only in their terminal substituent: a hydroxyl moiety versus a benzyloxy group, respectively. Herein we assessed the effects of these compounds on ER transcriptional activity and report that despite their similar overall structure, C13 and C14 produce distinct cell type-specific responses. Of note, C13 functions as a mixed agonist/antagonist in Hela cells, inducing only weak ER transcriptional activity while preventing coactivator recruitment and stabilizing ER expression. However, this compound effectively stimulates ER activity in MCF-7 cells, does not increase ER levels and promotes cell proliferation on par with E2. Conversely, C14 stimulates transcriptional activity in both cell types and enhances ER-coactivator interactions. The activities of both compounds were inhibited by the pure antiestrogen ICI 182,780. Taken together, these results reveal that C13 is a SERM while C14 is an ER agonist, and indicate that the terminal modification of the C-7α hexanyl side chain of these estradiol derivatives is an important determinant of the biocharacter of these ER ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303951PMC
http://dx.doi.org/10.1016/j.steroids.2012.01.011DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
12
transcriptional activity
12
selective estrogen
8
pure antiestrogens
8
alkyl side
8
side chains
8
c13 c14
8
activity
5
terminal substituents
4
substituents 7α
4

Similar Publications

Patients with metastatic breast cancer face reduced quality of life and increased mortality rates, necessitating more effective anti-cancer strategies. Building on previous research that identified metastatic-niche-specific metabolic vulnerabilities, we investigated how a ketogenic diet enhances estrogen receptor (ER)-positive liver metastatic breast cancer's response to Fulvestrant (Fulv) treatment. Using in vitro cell lines and in vivo xenograft metastasis mouse models, we examined the molecular mechanisms of combining ER targeting with a ketogenic diet.

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

Zearalenone exacerbates lipid metabolism disorders by promoting liver lipid droplet formation and disrupting gut microbiota.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety),Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China. Electronic address:

Zearalenone (ZEA), produced by Fusarium, is a fungal toxin commonly found in maize, wheat, and other cereals. ZEA has the ability to bind to estrogen receptors of humans and animals and is an environmental endocrine disruptor that may interfere with glucose homeostasis and lipid metabolism. In this study, we first investigated the effects of chronic exposure to low doses of ZEA with a high-fat-diet (HFD) in obese C57BL/6 J mice.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!