Bioactive sphingolipids in docetaxel-induced apoptosis in human prostate cancer cells.

Biomed Pharmacother

Izmir Institute of Technology, Department of Molecular Biology and Genetics, Cancer Genetics and Molecular Hematology Laboratory, 35430, Urla, Izmir, Turkey.

Published: March 2012

In this study, we examined the possible roles of ceramide/sphingosine-1-phosphate and ceramide/glucosyleceramide signaling in docetaxel-induced apoptosis by examining expression levels of the glucosyleceramide synthase and sphingosine kinase-1 and ceramide synthase gene family. As confirmed by isobologram analysis, docetaxel in combination with agents that increase intracellular ceramide levels increased the cytotoxic and apoptotic effects of docetaxel synergistically. More importantly, RT-PCR results revealed that expression levels of glucosyleceramide synthase and sphingosine kinase-1 were downregulated and ceramide synthase genes were upregulated in response to docetaxel. This study identifies mechanisms underlying the involvement of ceramide metabolizing genes in docetaxel-induced apoptosis in prostate cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2011.10.003DOI Listing

Publication Analysis

Top Keywords

docetaxel-induced apoptosis
12
prostate cancer
8
cancer cells
8
expression levels
8
levels glucosyleceramide
8
glucosyleceramide synthase
8
synthase sphingosine
8
sphingosine kinase-1
8
ceramide synthase
8
bioactive sphingolipids
4

Similar Publications

Approximately 20 million new cancer cases have occurred worldwide, and dose limitation occurs because of the liver and kidney toxicity of chemotherapeutic agents. Inflammation/apoptosis/ROS pathways appear to be activated in the liver and kidney toxicity of chemotherapeutic agents. This study was conducted to investigate the potential effects of silymarin (SLY) use against docetaxel (DTX)-induced liver and kidney damage in rats.

View Article and Find Full Text PDF

Chemotherapy is an important treatment option for advanced prostate cancer, especially for metastatic prostate cancer (PCa). Resistance to first-line chemotherapeutic drugs such as docetaxel often accompanies prostate cancer progression. Attempts to overcome resistance to docetaxel by combining docetaxel with other biological agents have been mostly unsuccessful.

View Article and Find Full Text PDF

Introduction: Chemotherapy, notably docetaxel (Doc), stands as the primary treatment for castration-resistant prostate cancer (CRPC). However, its efficacy is hindered by side effects and chemoresistance. Hypoxia in prostate cancer (PC) correlates with chemoresistance to Doc-induced apoptosis via Heme Oxygenase-1 (HO-1) modulation, a key enzyme in heme metabolism.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common malignancy in women globally. Although chemotherapy significantly improves the survival of cervical cancer patients, the development of drug resistance is inevitable. In the present study, our study showed that melatonin suppressed the proliferation, cell survival, colony formation, and the ability of adhering to fibronectin in cervical cancer cells.

View Article and Find Full Text PDF

Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!