The purpose of this study was to investigate the physiological maturation-inducing steroid (MIS) in the marine protandrous yellowfin porgy (Acanthopagrus latus). Female fish were injected with 2 doses of LHRH analog (10 and 40 μg per kg). Ovarian tissue was obtained at 6 h intervals for in vitro analysis of oocyte maturation. The most effective steroids for inducing in vitro maturation (germinal vesicle breakdown and GVBD) in cultured oocytes were 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) and 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S). 17,20βP was less potent than 20βS in inducing oocyte maturation. At higher concentrations, 11-deoxycortisol, 17α-hydroxy-progesterone, and 20β-21-dihydroxy-4-pregnen-3-one also significantly induced oocyte maturation. A tritiated precursor [(3)H]-pregnenolone, was cultured in vitro together with the maturing ovarian tissue. The tritiated metabolites were purified and identified by solvent extraction, HPLC, TLC, acetylation reaction and recrystallization. HPLC, TLC and recrystallization analysis showed that significant levels of tritiated 11-deoxycortisol (a precursor of 20β-S) and 20β-S, but not 17,20βP, were biosynthesized from [(3)H]-pregnenolone. Similar TLC profiles were obtained from the tritiated products that were isolated from the HPLC/TLC 20β-S fraction and standard 20β-S after the acetylation reaction. Constant specific radioactivity of tritiated 11-deoxycortisol and 20β-S but not 17,20βP by recrystallization was obtained in the tritiated metabolites isolated from HPLC and TLC fractions. The expression of 20β-hydroxysteroid dehydrogenase (20β-HSD) mRNA (a key enzyme that converts 11-deoxycortisol to 20β-S) was significantly increased in maturing ovarian tissue. This study provides the first evidence that 20β-S is converted from 11-deoxycortisol and is the possible MIS in yellowfin porgy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2012.01.010DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
16
yellowfin porgy
12
ovarian tissue
12
20β-s 1720βp
12
hplc tlc
12
20β-hydroxysteroid dehydrogenase
8
protandrous yellowfin
8
porgy acanthopagrus
8
acanthopagrus latus
8
20β-s
8

Similar Publications

ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.

View Article and Find Full Text PDF

Introduction: It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments.

Methods: Non-targeted lipidomics analysis.

View Article and Find Full Text PDF

Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.

View Article and Find Full Text PDF

The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.

View Article and Find Full Text PDF

Epitalon-activated telomerase enhance bovine oocyte maturation rate and post-thawed embryo development.

Life Sci

January 2025

Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea. Electronic address:

Telomerase is highly expressed in oocyte cumulus cells and plays a significant role in follicular development and oocyte maturation. In this study, we hypothesized that in vitro culture conditions may affect telomerase activity during in vitro embryo production (IVP) and that its activation may improve embryo quality. We first examined telomerase protein levels and localization in bovine cumulus-oocyte complexes via immunofluorescence assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!