Removal of amoxicillin by UV and UV/H2O2 processes.

Sci Total Environ

Department of Environmental Engineering, YIEST, Yonsei University, 234 Maeji, Heungup, Wonju, 220-710, Republic of Korea.

Published: March 2012

The degradation of the β-lactam antibiotic amoxicillin (AM) treated with direct UV-C and UV/H(2)O(2) photolytic processes was investigated in the present study. In addition, the antibacterial activity of the solution treated by UV/H(2)O(2) advanced oxidation was compared with AM solution treated with ozone. The degradation rate of amoxicillin in both processes fitted pseudo first-order kinetics, and the rates increased up to six fold with increasing H(2)O(2) addition at 10mM H(2)O(2) compared to direct photolysis. However, low mineralization was achieved in both processes, showing a maximum of 50% TOC removal with UV/H(2)O(2) after a reaction time of 80min (UV dose: 3.8×10(-3)EinsteinL(-1)) with the addition of 10mM H(2)O(2). The transformation products formed during the degradation of amoxicillin in the UV and UV/H(2)O(2) processes were identified by LC-IT-TOF analysis. In addition, microbial growth inhibition bioassays were performed to determine any residual antibacterial activity from potential photoproducts remaining in the treated solutions. An increase of the antibacterial activity in the UV/H(2)O(2) treated samples was observed compared to the untreated sample in a time-based comparison. However, the UV/H(2)O(2) process effectively eliminated any antibacterial activity from AM and its intermediate photoproducts at 20min of contact time with a 10mM H(2)O(2) dose after the complete elimination of AM, even though the UV/H(2)O(2) advanced oxidation process led to bioactive photoproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2011.12.011DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
10mm h2o2
12
uv/h2o2
8
amoxicillin uv/h2o2
8
uv/h2o2 processes
8
solution treated
8
uv/h2o2 advanced
8
advanced oxidation
8
addition 10mm
8
processes
5

Similar Publications

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Inhalable biohybrid microrobots: a non-invasive approach for lung treatment.

Nat Commun

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.

Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

Bougainvillea glabra-mediated synthesis of Zr₃O and chitosan-coated zirconium oxide nanoparticles: Multifunctional antibacterial and anticancer agents with enhanced biocompatibility.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:

The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.

View Article and Find Full Text PDF

Oral vancomycin induced flushing syndrome in a multiple myeloma patient: A case report and review of the literature.

Medicine (Baltimore)

November 2024

Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Background: Patients with hematological malignancies are at high-risk of Clostridium difficile infection (CDI). Oral vancomycin is a first-line treatment for CDI. Vancomycin has been widely reported to induce flushing syndrome (also known as Red man syndrome), a well-known hypersensitivity reaction mostly occurs after intravenous administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!