The aim of this study was to reveal the mechanisms ruling a fouling growth on both sides of a CMX-SB cation-exchange membrane (CEM), run after run during three consecutive electrodialysis (ED) treatments. A model solution containing a high magnesium/calcium ratio (2/5) was demineralized under two different pulsed electric field (PEF) on-duty ratios and dc current. The results showed a series of mechanisms ruling a multilayer mineral fouling growth and its delay by PEFs. The nature of the fouling layer, during a first run, depended on the diluate pH-value evolutions and the ion migration rates through the membrane. A subsequent multilayer fouling growth during consecutive treatments was ruled by the already formed mineral layers, where gradual sieving effects inverted the migration rates and led to a multistep crystal growth. Calcium carbonate grew on the diluate side of CEM, starting from its amorphous phase to then crystallize in a coexisting presence of aragonite and calcite. Amorphous magnesium hydroxide appeared on CEM apparently through fouling dehydration ruled by the mineral layers themselves and by overlimiting current regimes. A delayed fouling growth was observed for PEF ratio 0.3. A long pause lapse during pulse modes was demonstrated as an important parameter for fouling mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.12.067 | DOI Listing |
Environ Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu 610064, China.
Ensuring excellent anticoagulant, anti-inflammatory, and endothelialization properties in vascular stents through coating construction is crucial for their satisfactory performance post-implantation. In this study, we propose a cell-membrane mimetic multifunctional hyaluronic acid (HA)-based coating by combining the aminolyzed methacryloyloxyethyl phosphorylcholine (MPC) copolymer with oxidized hyaluronic acid (Ox-HA) through Schiff base reaction. Compared with traditional anti-fouling design, the composite coating present a stage-specific ability, which can resist the adhesion of blood components, while mediating vascular cell fate with the incorporation of HA.
View Article and Find Full Text PDFBioelectrochemistry
November 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
J Environ Manage
December 2024
College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Rainwater harvesting is a viable solution for providing clean water in regions where conventional water sources are scarce or contaminated. However, the harvested rainwater often contains microorganisms, suspended particles, and other impurities that must be removed before consumption. Gravity-driven ceramic membranes (GDCMs) are an efficient choice for purifying harvested rainwater due to their energy-saving properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!