Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis.

J Colloid Interface Sci

Institute of Nutraceuticals and Functional Foods (INAF) and Dairy Research Center (STELA), Department of Food Sciences and Nutrition, Pavillon Comtois, Université Laval, Sainte-Foy (Qc), Canada G1V 0A6.

Published: April 2012

AI Article Synopsis

  • The study investigates how fouling develops on a cation-exchange membrane during electrodialysis treatments, focusing on the influence of pulsed electric fields.
  • The fouling layer's composition varies depending on initial conditions, including pH and ion migration, leading to complex mineral growth patterns during consecutive treatments.
  • Key findings highlighted that higher PEF ratios and specific pulse timing can significantly delay fouling, indicating potential strategies for improving membrane performance.

Article Abstract

The aim of this study was to reveal the mechanisms ruling a fouling growth on both sides of a CMX-SB cation-exchange membrane (CEM), run after run during three consecutive electrodialysis (ED) treatments. A model solution containing a high magnesium/calcium ratio (2/5) was demineralized under two different pulsed electric field (PEF) on-duty ratios and dc current. The results showed a series of mechanisms ruling a multilayer mineral fouling growth and its delay by PEFs. The nature of the fouling layer, during a first run, depended on the diluate pH-value evolutions and the ion migration rates through the membrane. A subsequent multilayer fouling growth during consecutive treatments was ruled by the already formed mineral layers, where gradual sieving effects inverted the migration rates and led to a multistep crystal growth. Calcium carbonate grew on the diluate side of CEM, starting from its amorphous phase to then crystallize in a coexisting presence of aragonite and calcite. Amorphous magnesium hydroxide appeared on CEM apparently through fouling dehydration ruled by the mineral layers themselves and by overlimiting current regimes. A delayed fouling growth was observed for PEF ratio 0.3. A long pause lapse during pulse modes was demonstrated as an important parameter for fouling mitigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.12.067DOI Listing

Publication Analysis

Top Keywords

fouling growth
20
fouling
8
mineral fouling
8
cation-exchange membrane
8
gradual sieving
8
sieving effects
8
mechanisms ruling
8
migration rates
8
mineral layers
8
growth
6

Similar Publications

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Multifunctional hyaluronic acid-based coating to direct vascular cell fate for enhanced vascular tissue healing.

Int J Biol Macromol

December 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu 610064, China.

Ensuring excellent anticoagulant, anti-inflammatory, and endothelialization properties in vascular stents through coating construction is crucial for their satisfactory performance post-implantation. In this study, we propose a cell-membrane mimetic multifunctional hyaluronic acid (HA)-based coating by combining the aminolyzed methacryloyloxyethyl phosphorylcholine (MPC) copolymer with oxidized hyaluronic acid (Ox-HA) through Schiff base reaction. Compared with traditional anti-fouling design, the composite coating present a stage-specific ability, which can resist the adhesion of blood components, while mediating vascular cell fate with the incorporation of HA.

View Article and Find Full Text PDF

Effect of preferential growth of Shewanella oneidensis MR-1 on microbial corrosion of constituent phases of 2205 duplex stainless steel.

Bioelectrochemistry

November 2024

Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Article Synopsis
  • * In the study, Shewanella oneidensis MR-1 bacteria showed a higher tendency to attach to the ferrite phase, leading to more biofilm formation compared to the austenite phase, as confirmed by atomic force microscopy (AFM).
  • * The presence of S. oneidensis MR-1 exacerbated pitting corrosion, with deeper pits observed in biotic conditions versus sterile medium, while chromium (Cr) and nickel (Ni) contributed to a more stable passive film on the austenite phase.
View Article and Find Full Text PDF

Purification of harvested rainwater using gravity-driven ceramic membrane: A visualization study combining Micro-CT and COMSOL simulations.

J Environ Manage

December 2024

College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Rainwater harvesting is a viable solution for providing clean water in regions where conventional water sources are scarce or contaminated. However, the harvested rainwater often contains microorganisms, suspended particles, and other impurities that must be removed before consumption. Gravity-driven ceramic membranes (GDCMs) are an efficient choice for purifying harvested rainwater due to their energy-saving properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!