Cultivars of rice (Oryza sativa L.), especially the large-spikelet-type, often fail to achieve the high yield potential due to poor grain-filling of their inferior (late-flowering) spikelets. The superior (early-flowering) spikelets normally contain more abscisic acid (ABA) than the inferior spikelets. It was speculated that ABA might play a pivotal role in the grain-filling of inferior spikelets. To understand the molecular regulation involved in this process, we employed the 2-D gel-based comparative proteomic and phosphoproteomic analyses to search for differentially expressed proteins in the inferior spikelets under exogenous ABA treatment. A total of 111 significantly differential proteins and 31 phosphoproteins were found in the inferior spikelets after treatment. Among them, 100 proteins and 23 phosphoproteins were identified by using MALDI-TOF/TOF MS. In addition, the gene expression patterns of the inferior spikelets were confirmed with RT-PCR. These differentially expressed proteins are active in defense response, carbohydrate, protein, amino acid, energy and secondary metabolisms, as well as cell development and photosynthesis. The results suggest that the grain-filling of rice inferior spikelets is regulated by ABA through some proteins and phosphoproteins participating in carbon, nitrogen and energy metabolisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2011.11.012DOI Listing

Publication Analysis

Top Keywords

inferior spikelets
28
proteins phosphoproteins
12
spikelets
9
proteomic phosphoproteomic
8
oryza sativa
8
inferior
8
grain-filling inferior
8
differentially expressed
8
expressed proteins
8
proteins
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!