The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314946PMC
http://dx.doi.org/10.1016/j.envpol.2011.12.031DOI Listing

Publication Analysis

Top Keywords

element distribution
12
root anatomy
8
anatomy element
8
salix caprea
8
accumulation capacities
8
toxic elements
8
distribution
4
distribution vary
4
vary salix
4
caprea isolates
4

Similar Publications

Background/purpose: Dental implants can restore both function and aesthetics in edentulous areas. However, the absence of cushioning mechanical behavior in implants may limit their clinical performance and reduce the long-term survival rates. This study aimed to establish an implant cushion mechanism that mimicked the natural periodontal ligament, utilizing the properties of composite hydrogels.

View Article and Find Full Text PDF

Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.

Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.

View Article and Find Full Text PDF

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Cytometry is a single cell, high-dimensional, high-throughput technique that is being applied across a range of disciplines. However, many elements alongside the data acquisition process might give rise to technical variation in the dataset, called batch effects. CytoNorm is a normalization algorithm for batch effect removal in cytometry data that was originally published in 2020 and has been applied on a variety of datasets since then.

View Article and Find Full Text PDF

This study introduces a novel anchor-type proximal femoral nail (AT-PFN) to improve the bone-fixation integrity over the standard screw-type nail (SST-PFN). Quasi-static incremental cyclic load test was performed to investigate load-displacement, cumulative deformation energy, time-strain, and backbone curves. The finite element analysis (FEA) was implemented to identify the stress and strain distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!